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Inference for Bivariate Survival Data by Copula
Models Adjusted for the Boundary Effect
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2Institute of Statistics, National Chiao Tung University,
Taiwan, R.O.C.

Copula models describe the dependence structure of two random variables
separately from their marginal distributions and hence are particularly useful in
studying the association for bivariate survival data. Semiparametric inference for
bivariate survival data based on copula models has been studied for various
types of data, including complete data, right-censored data, and current status
data. This article discusses the boundary effect on these inference procedures, a
problem that has been neglected in the previous literature. Specifically, asymptotic
distribution of the association estimator on the boundary of parameter space is
derived for one-dimensional copula models. The boundary properties are applied
to test independence and to study the estimation efficiency. Simulation study is
conducted for the bivariate right-censored data and current status data.

Keywords Copula model; Current status data; Independence test; Right-
censored data; Semiparametric estimation.

Mathematics Subject Classification Primary 62N01; Secondary 62H99.

1. Introduction

Let �T1� T2� be a pair of correlated failure-time variables of interest. Their joint
survival function can be expressed as

S�s� t� = Pr�T1 > s� T2 > t� = C�S1�s�� S2�t��� (1)

where Sj�t� = Pr�Tj > t��j = 1� 2� are marginal survival functions and C�·� ·� �
�0� 1�2 → �0� 1� is the so-called copula function which by itself is a bivariate
survival (distribution) function with uniform marginals. The advantage of the
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2928 Ding and Wang

copula representation is that the dependence structure can then be studied separately
from the marginal effects. Typically, a parametric form C	 is selected for C, with 	
a real- or vector-valued parameter that is related to Kendall’s tau by the formula


 = 4
∫ 1

0

∫ 1

0
C	�u� v�C	�du� dv�− 1�

Copula models have been popular in describing the association for bivariate
survival data with skewed marginal distributions. Such flexibility not only reflects
in modeling but also in statistical inference. Semiparametric pseudo-likelihood
estimation procedures for estimating 	 have been proposed by Genest et al.
(1995), Shih and Louis (1995), and Wang and Ding (2000), based on complete
data, right-censored data, and current status data, respectively. In those articles,
asymptotic normality of n1/2�	̂− 	0�, where 	̂ denotes the corresponding estimator
of 	 and 	0 denotes the true parameter, has been proved when 	0 lies in the
interior of the parameter space. For some copula models, the parameter value
on the boundary corresponds to important cases such as independence. However,
asymptotic properties on the boundary of the parameter space have not been
established yet. It should be mentioned that Genest et al. (1995) and Shih and
Louis (1995) claimed that their estimators are fully efficient at independence. These
arguments did not consider the boundary effect. Wang and Ding (2000) also directly
applied their point estimator to test independence in analyzing a real dataset.
Validity of the p-values reported in their analysis also requires further investigation.

This article is organized as follows. In Sec. 2, the asymptotic distribution of
n1/2�	̂− 	0� is derived when 	0 is located at the boundary of the parameter space
under the three different data structures mentioned above. Simulations based on
right-censored data were performed to verify the theoretical derivations. In Sec. 3,
we consider the problem of testing H0 � 	 = 	0 when 	0 is located on the boundary.
Simulation results based on current status data are also presented. The efficiency
property is discussed in Sec. 4. Concluding remarks are given in Sec. 5.

2. Parameter Estimation at the Boundary

Asymptotic properties of the maximum likelihood estimator on the boundary have
been discussed by Moran (1971), Chant (1974), Self and Liang (1987), and Feng and
McCulloch (1992). The parameter space discussed in the above articles is a subset
of Rp for p ≥ 1. The level of difficulty depends on the dimension of Rp. That is,
how many of the unknown parameters are on the boundary and the correlation
between the components of the maximum likelihood estimators (MLEs). In this
article, we assume that �T1� T2� belong to the copula family in (1) and focus on a
simple case in which the parameter space, denoted as �, is a subset of R. Denote
	∗ as the lower (or upper) boundary value of �. That is, � = �	 ≥ 	∗� (or � =
�	 ≤ 	∗�). Examples of one-parameter copula models can be found in Joe (1993),
Shih and Louis (1995), Nelsen (1999), and Genest and Rivest (2001). For many
copula families, the independence case C	�u� v� = uv occurs at the boundary of the
parameter space. Examples of such copula families are given below.

Gumbel (1960):

C	�u� v� = e−��− log u�	+�− log v�	�1/	 �	 ≥ 1�
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Boundary Effect for Bivariate Copula Inference 2929

Galambos (1975):

C	�u� v� = uve��− log u�−	+�− log v�−	�−1/	
�	 ≥ 0�

Hüsler and Reiss (1989):

C	�u� v� = v��	−1+0�5	 log��− log v�/�− log u���u��	−1+0�5	 log��− log u�/�− log v��� �	 ≥ 0��

where ��·� denotes the standard normal distribution function;
Joe (1993):

C	�u� v� = 1− ��1− u�	 + �1− v�	 − �1− u�	�1− v�	�1/	 �	 ≥ 1��

When the marginal distributions are not specified, 	 can be estimated using the
pseudo-likelihood approach. Specifically the semiparametric estimator 	̂ maximizes
the pseudo log-likelihood function, logL�	� Ŝ1� Ŝ2�, where Ŝj�t� is a nonparametric
estimator of Sj�t� = Pr�Tj > t��j = 1� 2�. Note that Ŝj�t� can be the empirical
estimator, the Kaplan-Meier estimator and the nonparametric MLE for complete
data, right-censored data, and current status data, respectively.

Theorem 2.1. Assume 	0 = 	∗. When 	∗ is located at the lower boundary of the
parameter space, as n → � n1/2�	̂− 	∗� converges in distribution to the random
variable X+ = max�0� X� = I�X > 0�X, where X ∼ N�0� �2

X�. When 	∗ is located at the
upper boundary of the parameter space, n1/2�	̂− 	∗� converges in distribution to the
random variable X− = min�0� X�.

The normal random variable X actually has the asymptotic normal distribution
of n1/2�	̂− 	� if 	0 = 	 lies in the interior of �. The variance of X, denoted as �2

X , has
been derived under three different data structures. Specifically, for complete data,
�2
X = �2 given in Eq. (3) of Genest et al. (1995, p. 545); for right-censored data,

�2
X = 
2 in the last line of p. 1388 in Shih and Louis (1995); and for current status

data, �2
X = �2 on p. 884 of Wang and Ding (2000). We give the proof of Theorem 2.1

in the Appendix for current status data (the proof for the other two data types are
very similar and thus omitted).

The finite sample distribution of 	̂ was examined via simulations based on right-
censored data. The true survival times T1, T2 were generated from the Gumbel
family and then the times were subjected to right censoring by two independent
uniformly distributed random censoring variables, C1 and C2. The sample size is
400 and the censoring proportion is about 50%. The method proposed by Shih
and Louis (1995) was applied to obtain 	̂. Based on 1,000 simulation runs, there
were 509 times with 	̂ = 1. This agrees with the statement in Theorem 2.1 that 	̂
follows the mixture distribution with 50% probability at the true parameter value
1. For the other situation with 	̂ �= 1, Theorem 2.1 states that asymptotically the
estimates follow a normal distribution truncated at the center. To verify whether
this is true, we did a normal probability plot. Based on those estimates 	̂ �= 1, we
subtracted 1 from each estimate to get x1� x2� � � � � xm. Then we made a normal
probability plot based on x1� x2� � � � � xm combined with −x1�−x2� � � � �−xm. This plot
should be close to a straight line if 	̂ is distributed as claimed in Theorem 2.1.
We see that the normal probability plot in Fig. 1 is indeed very close to a straight
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2930 Ding and Wang

Figure 1. The normal probability plot for 	̂− 	 and 	− 	̂. This should be close to a
straight line if the estimator is distributed as what the Theorem 2.1 stated.

line. This shows that the asymptotical result is a very good approximation for the
simulation setting. We also conducted simulation with censoring rates of 20% and
80% which yield the proportions of 	̂ = 1 equal to 55�7% and 49�7%, respectively.
The normal probability plots for these two cases are similar.

3. Hypothesis Testing at the Boundary with an
Application to Bivariate Current Status Data

Now we consider the problem of testing H0 � 	 = 	0 when 	0 = 	∗. Without loss
of generality, let Ha � 	 > 	0. For the copula families where the independence
corresponds to the boundary parameter value, the null hypothesis states that the
two failure times are independent. Therefore, the test discussed here becomes a test
of independence under the assumed copula model. Let � be the level of significance.
When 	̂ = 	0, obviously H0 is accepted. Consider the decision rule such that H0 is
rejected if

n1/2
(
	̂− 	0

)
�̂X

> z�� (2)

where z� > 0 is the cut-off point satisfying 1−��z�� = ����·� is the cumulative
distribution function of the standard normal distribution, and �̂2

X is a consistent
estimator of �2

X which will be discussed later. It is easy to see that when � < 0�5,
under H0 Pr

(
n1/2�	̂− 	0�/�̂X > z�

)
converges to Pr�X/�X > z�� = �. Equivalently,

one can construct the test by comparing the values of p-value and �. When
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Boundary Effect for Bivariate Copula Inference 2931

	̂− 	0 > 0, the p-value can be written as

Pr
(
X+ > n1/2�	̂− 	0�

) = Pr
(
Z >

n1/2�	̂− 	0�

�̂X

)
= 1−�

(
n1/2�	̂− 	0�

�̂X

)
�

where Z is the standard normal distribution. It is easy to see that as n → �,

Pr
(
1−�

{
n1/2�	̂− 	0�

�̂X

}
≤ �

)
= ��

when � < 0�5. The above analysis implies that when � < 0�5, one can use the same
one-sided test derived without considering the boundary effect.

Now we discuss variance estimation. There are two reasonable analytic
candidates, namely �̂2

X�	̂� and �̂2
X�	

∗�. The two estimators only differ in the plugged-
in estimator of 	. Using �̂2

X�	̂� is like inverting the confidence interval directly
for hypothesis testing without adjusting for the boundary effect. Under H0, both
variance estimators are consistent but the convergence of �̂2

X�	̂� to the true variance
�2
X is slower than �̂2

X�	0�. Furthermore, when we reject H0, the p-value corresponds
to a small value and, equivalently, 	̂− 	0 is large which are the cases where 	̂ is not
a very accurate estimate of 	. Therefore the Type 1 error based on the test statistic
using �̂2

X�	̂� is not as accurate as that using �̂2
X�	0�.

We now apply the above result to test the independence for bivariate current
status data. For the copula families that independence occurs at the boundary of
parameter space, testing H0 � 	 = 	∗ is equivalent to testing independence under
the assumed copula model. For bivariate current status data, the formula of �̂2

X

has been derived by Wang and Ding (2000). Alternatively, Ding and Wang (2004)
proposed a nonparametric test for testing independence based on bivariate current
status data. The nonparametric test is more robust under model mis-specification.
However, the semi-parametric testing procedure is likely to produce a more powerful
test if the underling model is correctly specified. Simulations were performed to
examine our conjecture. The true failure times were generated from theGumbel family
and then current status type of data were constructed with the censoring distribution
independent of �T1� T2�. As expected, the test based on �̂2

X�	0� produces better power
than that based on �̂2

X�	̂�. However even the size of the former test is too conservative
and converges to the nominal level only at very large sample size with n ≥ 1� 000 (data
not shown here). Hence, both variance estimators are not quite satisfactory.

To improve variance estimation, we propose to use bootstrapping similar to
the idea used in Ding and Wang (2004). For current status data, the true failure
times �T1k� T2k� are censored by Ck such that one only observes ��Ck� �1k� �2k� k =
1� � � � � n�, where �jk = Tjk ∧ Ck �j = 1� 2� for k = 1� � � � � n. From the original data,
one can generate a pseudo dataset,

{(
Ck� �

∗
1k� �

∗
2k

)
k = 1� � � � � n

}
, where �∗jk is a

Bernoulli random variable with probability F̂j�Ck� �j = 1� 2�. The procedure is
repeated m times. The semi-parametric estimator was computed for each pseudo
dataset and let 	̂�r� be the estimator based on the rth bootstrapped sample. Then the
proposed bootstrap variance estimator is calculated by

�̂2
X�b� =

m∑
r=1

(
	̂�r� − 	∗

)2
/

m∑
r=1

I
{
	̂�r� �= 	∗

}
where I�·� is the indicator function.
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2932 Ding and Wang

Table 1
Empirical powers of the test (2) with �̂2

X�b� and the test of Ding and Wang (2004)
based on 4,000 replications. The first column lists the sample size �n�, the second
column lists the prevalence rate (P.L.) of each simulated data sets. The data were
generated for the Gumbel family with different levels of Kendall’s 
 listed on the
top row. In each cell, the first number is the empirical probability of rejecting
H0 using test (2) with �̂2

X�b� and the number in the parenthesis is that using
the test of Ding and Wang (2004)

Correlation 


n P�L� 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

200 ≈20% 0�040 0�148 0�434 0�656 0�853 0�949 0�983 0�995
�0�041� �0�130� �0�421� �0�652� �0�838� �0�943� �0�981� �0�994�

≈50% 0�042 0�156 0�343 0�578 0�763 0�914 0�976 0�996
�0�049� �0�172� �0�355� �0�605� �0�784� �0�923� �0�981� �0�997�

400 ≈20% 0�045 0�279 0�662 0�912 0�986 0�999 1�000 1�000
�0�039� �0�237� �0�596� �0�883� �0�982� �0�999� �1�000� �1�000�

≈50% 0�044 0�222 0�554 0�838 0�966 0�997 1�000 1�000
�0�048� �0�211� �0�533� �0�817� �0�963� �0�997� �1�000� �1�000�

We conducted simulations to compare test (2) using �̂2
X�b� with the test with

highest power in Ding and Wang (2004) at nominal level � = 0�05. The simulation
setup is the same as that mentioned earlier. We evaluated cases with two different
sample sizes: n = 200 and n = 400; two different prevalence rates Pr��j = 1�:
20% and 50%; and different levels of Kendall’s 
 � 0� 0�05� 0�10� � � � � 0�35. For
each combination, 4,000 simulation runs were conducted and the results were
summarized in Table 1.

From Table 1, we can see that the test (2) using �̂2
X�b� has correct size (i.e., Type I

error rate under the null hypothesis of 
 = 0�00). And the size of the test (2) becomes
closer to the nominal level � = 0�05 when the sample size increases from n = 200 to
n = 400. The power of the test (2) using �̂2

X�b� is higher than the power of Ding and
Wang (2004)’s test in most cases. When n = 200 and prevalent level is 50%, the test
(2) using �̂2

X�b� do have lower power. That seems due to its lower size than Ding and
Wang (2004)’s tests. As sample size increases, its size increases to the nominal level
and its power also increases.

4. Efficiency of the Estimator

Genest et al. (1995) and Shih and Louis (1995) claimed that their semi-parametric
estimators are fully efficient under independence (i.e., S�t1� t2� = S1�t1�S2�t2�). They
showed that the semi-parametric estimator 	̂ and the efficient estimator 	̃ both have
asymptotical normal distributions with the same variance under independence. Here,
	̃ is the maximum likelihood estimator obtained when S1 and S2 are completely
specified. Note that 	̃ is an efficient estimator since its variance achieves the Cramer-
Rao lower bound asymptotically (except at the boundary value which is a set
of Lebesgue measure zero). The analysis in Genest et al. (1995) and Shih and
Louis (1995), however, did not consider the boundary situation. Here we give our
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Boundary Effect for Bivariate Copula Inference 2933

explanations. When the independence case occurs at the boundary of the parameter
space, neither 	̂ nor 	̃ are asymptotic normally distributed. However, if 	0 = 	∗

under independence, then n1/2�	̃− 	0� still has the same asymptotic distribution
as n1/2�	̂− 	0�, both of which converge to the mixture distribution X+ as n → �.
Therefore, the efficiency claims are still true if we define efficiency as having the
same asymptotic distribution as 	̃ which is the best we can hope for in practice.

Now we show similar efficiency property for the estimator proposed by Wang
and Ding (2000) based on bivariate current status data. On p. 891 of Wang and
Ding (2000), we have the expression:

Q�	0� S1� S2� c� �1� �2� =
�

�	
l�	� S1�c�� S2�c�� �1� �2�
	=	0

− l̃�c� �1� S1�G��1�− l̃�c� �2� S2�G��2��

The last two terms appear since the survival distribution functions Sj�·� �j = 1� 2�
are estimated by the corresponding NPMLEs. Conditional on the censoring time Ci

and �2�i �i = 1� � � � � n�, it is easy to show that the covariance of the first term with
l̃�c� �1� S1�G��1� is zero. Hence, the unconditional covariance is also zero. Similar
arguments apply to the covariance of the first term with the last term. Therefore,

Cov
{
�

�	
l�	� S1�c�� S2�c�� �1� �2�
	=	0

� l̃�c� �j� Sj�G��j�

}
= 0 �j = 1� 2��

Consequently, the variance of Q�	0� S1� S2� c� �1� �2� is bounded below by

Var�	̃� = Var
(

�

�	
l�	� S1�c�� S2�c�� �1� �2�
	=	0

�

)
�

Direct calculations show that l̃�c� �j� Sj�G��j�� = 0 �j = 1� 2� under independence
no matter whether 	0 lies in the interior or on the boundary. Thus, replacing
marginals S1 and S2 by their univariate NPMLEs does not add to asymptotic
variance only at the independence case. Hence, Wang and Ding’s estimator also
has the same distribution as 	̃ (the MLE assuming marginals S1 and S2 are known)
under independence. Therefore the semi-parametric estimator is also efficient under
independence for current status data similar to the cases for complete data and for
right-censored data.

5. Concluding Remarks

In this article, we discuss the boundary problem for one-parameter copula models
with 	 ∈ R. Examples of two-parameter copula families can be found in Genest and
Rivest (1993, 2001) and Nelsen (1999). The pseudo-likelihood estimation procedure
can be easily extended to multiparameter cases as illustrated in Sec. 4 of Genest
et al. (1995). For the boundary problem on higher dimensions, one can apply the
results of Self and Liang (1987) based on maximum likelihood estimation. Although
the techniques can be directly applied under the context of pseudo-likelihood
estimation, derivations of the high-dimensional mixture distribution require a lot of
analytical work. Consider the example of 	 = �	1� 	2�

T ∈ � = �1 ×�2 ⊂ R2. The
case 2 of Self and Liang (1987) discusses the situation when the true value of
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2934 Ding and Wang

	1 is located on the boundary of �1 but that of 	2 lies in the interior of �2.
Their case 3 discusses the situation when both of 	j �j = 1� 2� are located on the
boundary of �j . In the special case such that the two parameters are orthogonal(
that is, �

�	1

�
�	2

logL�	� Ŝ1� Ŝ2� = 0
)
, it is easy to derive the asymptotic distribution

of n1/2�	̂− 	0� from marginal analysis. However, in general, explicit derivations are
complicated.

One should be cautious when applying the iterative algorithms as illustrated
in Genest et al. (1995), Shih and Louis (1995), and Wang and Ding (2000). If the
maximum occurs on the boundary, the iterative algorithms will break down. For
the one-parameter case this can be resolved by adding a step to check the sign of
U
(
	∗� Ŝ1� Ŝ2� Hn

) = 1
n

�
�	
logL

(
	∗� Ŝ1� Ŝ2

)
. Specifically, for lower boundary value 	∗, if

U
(
	∗� Ŝ1� Ŝ2� Hn

)
< 0 then set 	̂ = 	∗; otherwise the algorithm will find a solution in

the interior of the parameter space. Implementation of the maximization algorithm
for the multiple parameters case, however, is much harder although it is theoretically
feasible.

If the independence case happens at the boundary of a multi-dimensional
parameter space, it becomes difficult to test independence under the semiparametric
framework due to the aforementioned difficulties involving the algorithm and
asymptotic distribution. Nonparametric tests for independence, which do not make
any model assumption, have been proposed by Hsu and Prentice (1996) and Shih
and Louis (1996) for right-censored data and Ding and Wang (2004) for current
status data. However, when we know the copula family, these tests usually have
lower asymptotic power than the semiparametric tests for independence as shown
by the simulation study.

Appendix

Asymptotic Distribution of n1/2��̂ − �0� When �0 = �∗

We follow the notation of Wang and Ding (2000). Under the copula model
in (1), Wang and Ding proposed a semiparametric method for estimating 	

based on current status data of the form, ��Ci� �1i� �2i� �i = 1� � � � � n��, which are
iid replications of �C� �1 = I�T1 ≤ C�� �2 = I�T2 ≤ C��, where C is the common
monitoring time for the pair. It is assumed that C is independent of �T1� T2�. The
proposed estimator 	̂ maximizes the pseudo log-likelihood function, logL

(
	� Ŝ1� Ŝ2

)
,

where Ŝj�t� is the nonparametric MLE of Sj�t� = Pr�Tj > t� �j = 1� 2� discussed in
Groeneboom and Wellner (1992, pp. 66–67). The corresponding score equation is
defined as

U
(
	� Ŝ1� Ŝ2� Hn

) = 1
n

�

�	
logL

(
	� Ŝ1� Ŝ2

) = 0�

where Hn is the empirical distribution of the observed data, and the derivative is
taken from the appropriate side if 	 is close to the boundary value of �, denoted as
	∗. If the maximum occurs in the interior region of �, 	̂ is the solution to the score
equation. However, the equation does not have a solution if the maximum occurs
on the boundary. In such a case, 	̂ = 	∗, U

(
	∗� Ŝ1� Ŝ2� Hn

)
< 0 and the iterative

algorithm cannot be applied.
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Applying the results in Wang and Ding (2000, p. 891), one can show
that n1/2U

(
	0� Ŝ1� Ŝ2� Hn

)
is asymptotically normal with mean zero and variance

Q�	0� S1� S2� C� �1� �2� defined in (7) (Wang and Ding, 2000, p. 884, 891). Therefore,
as n → �,

Pr
(
n1/2U

(
	0� Ŝ1� Ŝ2� Hn

)
> 0

) = Pr
(
n1/2U

(
	0� Ŝ1� Ŝ2� Hn

)
< 0

) = 0�5�

When n1/2U
(
	0� Ŝ1� Ŝ2

)
< 0, the pseudo log-likelihood is maximized at 	0 = 	∗, it

follows that n1/2�	̂− 	0� = 0. When n1/2U
(
	0� Ŝ1� Ŝ2

)
> 0, the score equation has a

solution. A Taylor expansion can be conducted at the solution 	̂, and the analysis
in Wang and Ding (2000) implies that

n1/2�	̂− 	0� =a −�V�	0� S1� S2� H��−1n1/2U
(
	0� Ŝ1� Ŝ2� Hn

)
�

where V�	0� S1� S2� H� is defined in Sec. 2.3 (Wang and Ding, 2000). Therefore the
asymptotic distribution of n1/2�	̂− 	0� is a mixture distribution with probability 0.5
at the mass point, 0, and probability 0.5, being the positive half of the mean-zero
normal random variable X with variance

�2 = �V�	0� S1� S2� H��−2 Var�Q�	0� S1� S2� C� �1� �2��� (A.1)

The same techniques can be applied under the two other data structures.
Specifically, the score equations derived for complete data (Genest et al., 1995) and
for right-censored data (Shih and Louis, 1995) are also mean-zero normal variables.
Similar arguments can be applied to show that the corresponding asymptotic
distributions at the boundary are also mixture distributions.
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