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ABSTRACT. Multiple events data are commonly seen in medical applications. There are two
types of events, namely terminal and non-terminal. Statistical analysis for non-terminal events is
complicated due to dependent censoring. Consequently, joint modelling and inference are often
needed to avoid the problem of non-identifiability. This article considers regression analysis for
multiple events data with major interest in a non-terminal event such as disease progression.
We generalize the technique of artificial censoring, which is a popular way to handle dependent
censoring, under flexible model assumptions on the two types of events. The proposed method is
applied to analyse a data set of bone marrow transplantation.
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1. Introduction

Multiple events data are commonly seen in medical studies. One type of events is terminal
in the sense that its occurrence precludes the occurrence of other events. The other type is
non-terminal and subject to censoring by the terminal event. In this article, we use death
and disease progression as examples of terminal and non-terminal events respectively.
Let T1 be the time to progression, T2 be the time to death, C be the time to external
censoring and Z= (Z1, . . ., ZK )′ be the vector of covariates. Observed variables become
X =T1 ∧T2 ∧C, Y =T2 ∧C, �1 = I (T1 ≤T2 ∧C), �2 = I (T2 ≤C) and Z. Throughout the paper,
we will assume that C is independent of T1 and T2 given Z.

Let (Xi , Yi , �1i , �2i , Zi), i =1, . . ., n, be independent and identically distributed random rep-
lications of (X , Y , �1, �2, Z). Such data are called semi-competing risks data by Fine et al.
(2001). Inference about the progression time T1 is complicated due to dependent censoring
by T2. There has been increasing attention in developing statistical methods for analysing
semi-competing risks data under dependent censoring. In the absence of covariates, Day
et al. (1997), Fine et al. (2001) and Wang (2003) studied the association relationship between
T1 and T2 in the region of T1 ≤T2.

We are interested in how the covariate Z affects T1. Regression analysis based on T1 ∧T2

is straightforward. Alternatively, semi-parametric regression models based on the cumula-
tive incidence function, Pr(T1 ≤ t, T1 ≤ T2) have been proposed by Fine & Gray (1999) and
Fine (2001). Another popular approach to analysing semi-competing risks data is via a multi-
state framework, or more specifically an illness–death model in which no recovery is possible
(Andersen et al., 1993). This approach usually imposes model assumptions on the transition
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rates between the states. For example, if the interest is in progression, one may assume that
the progression intensities are proportional among different covariate groups (see Andersen
et al. 1993, example VII.1.1).

Here, we take a different approach by directly modelling the covariate effect on T1.
Specifically, we assume the linear regression model

h1(T1)=�′
1Z+ ε1, (1)

where h1(t) is a known monotone function and ε1 is an error term. The distribution of ε1

is not specified. For example, when h(t)= t, the model becomes a location-shift (LS) model,
and when h(t)= log(t), the model is the accelerated failure time (AFT) model. Our primary
interest is to estimate �1 based on semi-competing risks data (Xi , Yi , �1i , �2i , Zi), i =1, . . ., n.
However, due to dependent censoring by T2, the marginal distribution of T1 is not identi-
fiable. This implies that model (1) is not sufficient and additional assumptions are needed.
We make two extra assumptions as follows. First, we assume that T2 follows the regression
model

h2(T2)=�′
2Z+ ε2, (2)

where h2(t) is a monotone function which may be known or unknown and ε2 is another error
variable. When h2(t) is unknown but the distribution of ε2 is completely specified, T2 is said
to follow a transformation model. Examples of this class of models include the proportional
hazards (PH) model, where ε2 has the extreme value distribution, and the proportional odds
model, where ε2 has the standard logistic distribution. Secondly, we assume that the correla-
tion structure between the failure times T1 and T2 is unknown but is common for all covariate
values. That is,

Pr(ε1 > s, ε2 > t |Z)=Pr(ε1 > s, ε2 > t) (3)

but the form of the joint distribution is not specified. Compared with the existing methods,
our proposal in (1) contains a flexible class of regression models and allows one to study the
‘net’ covariate effect on T1 after separating its effect on T2. The additional model assumption
in (2) often by itself is of some interest. Condition (3) states that after removing the marginal
covariate effects, the bivariate error distribution is independent of Z. This condition has been
discussed by Robins (1995a, lemma 2) under the simple two-sample case (Z =0 or 1).

In deriving the inference procedure in this paper, we generalize the method of artificial
censoring to remove the bias due to dependent censoring. The artificial censoring technique
has been frequently used in related problems. For example, Robins (1995a,b) specified a model
which describes the joint effect of Z and T2 on T1 and then proposed an estimation method
for discrete covariates. Under a two-sample setting with Z =0, 1, Lin et al. (1996) assumed
models (1) and (2) with hj(t)= log(t), j =1, 2, and condition (3). Chang (2000), Ghosh & Lin
(2003) and Lin & Ying (2003) further extended the idea of Lin et al. (1996) to recurrent events
and time-varying covariates with the progression event being replaced by recurrent events but
death (or informative drop-out) still being the terminal event. It is important to mention that
these papers all assume that the types of marginal models in (1) and (2) are the same. That
is h1(t)=h2(t).

In this paper, we extend the method of artificial censoring to a much more general regres-
sion setting that allows h1(t) and h2(t) to be different. Through this extension, the mechanism
of artificial censoring can be better understood. A nice consequence is that the model assump-
tion on T2 is extended to the class of transformation models with h2(t) being unspecified.
Thus, the commonly used proportional hazards and proportional odds models can be
included as possible model alternatives for T2. Such an extension greatly increases the
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applicability of the artificial censoring technique. The proposed ideas are described in
section 2. A model checking procedure is proposed in section 3. Section 4 contains simu-
lation and data analyses. Section 5 provides some concluding remarks. Proofs are given in
the Appendices.

2. The proposed methodology

2.1. Inference of �1 when T2 follows a linear regression model

The proposed method was motivated by the log-rank statistic (Kalbfleisch & Prentice, 2002,
p. 231). First consider the simplified situation of comparing the marginal distributions of T2

for two samples with Z =0, 1. The log-rank statistic can be used to test the equivalence of
the two samples. Specifically, let

L2 = 1
n

n∑
i =1

�2i

{
I (Zi =1)−

∑n
j =1 I (Yj ≥Yi , Zj =1)∑n

j =1 I (Yj ≥Yi)

}
,

which is an estimator of∫ ∞

t =0
Pr(C > t)

{
d Pr(T2 ≤ t, Z =1)− Pr(T2 ≥ t, Z =1)

Pr(T2 ≥ t)
d Pr(T2 ≤ t)

}
.

When Pr(T2 > t |Z =1)=Pr(T2 > t |Z =0), L2 converges to zero. The test statistic L2 can be
inverted to construct an estimating function of �2. Notice that T̃ 2(�2)=h2(T2) − �2Z is
independent of Z only at the true value �2 =�0

2. That is,

Pr(T̃ 2(�2) > t |Z =1)=Pr(T̃ 2(�2) > t |Z =0)

at the true value �2 =�0
2. Hence, one can estimate �2 by solving

U2(�2)= 1
n

n∑
i =1

�2i

{
Zi −

∑n
j =1 I (Ỹ j(�2)≥ Ỹ i(�2))Zj∑n

j =1 I (Ỹ j(�2)≥ Ỹ i(�2))

}
=0, (4)

where Ỹ i(�2)= T̃ 2i(�2) ∧ C̃i(�2)=h2(Yi) − �2Z and C̃(�2)=h2(C) − �2Z. Note that
�2 = I (T2 =Y )= I (T̃ 2 = Ỹ ). It follows that U2(�0

2) converges to

∫ ∞

t =0
Pr(C̃(�0

2) > t)

{
d Pr(T̃ 2(�0

2)≤ t, Z =1)− Pr(T̃ 2(�0
2)≥ t, Z =1)

Pr(T̃ 2(�0
2)≥ t)

d Pr(T̃ 2(�0
2)≤ t)

}
=0.

The above idea can be easily extended to test equivalence of the distributions of T1 for
two samples. Specifically, consider

L1 = 1
n

n∑
i =1

�1i

{
I (Zi =1)−

∑n
j =1 I (Xj ≥Xi , Zj =1)∑n

j =1 I (Xj ≥Xi)

}
,

which is an estimator of∫ ∞

0
Pr(C > s)

{
d Pr(T1≤ s, T1≤T2, Z =1)−Pr(T1 ≥ s, T1 ≤T2, Z =1)

Pr(T1 ≥ s, T1 ≤T2)
d Pr (T1 ≤ s, T1 ≤T2)

}
.

It is important to note that L1 converges to zero if

Pr(T1 > s, T2 > t |Z =1)=Pr(T1 > s, T2 > t |Z =0). (5)

Our main purpose is to estimate �1 under model (1) for general forms of Z. To
modify L1 as an estimating equation of �1, we consider the transformed variables T̃ j(�j)=
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hj(Tj) − �′
jZ, j =1, 2. Notice that (T̃ 1(�0

1), T̃ 2(�0
2)) has the same joint distribution as (ε1, ε2),

where �0
j is the true value of �j for j =1, 2. We will use the property that

Pr(T1(�0
1) > s, T2(�0

2) > t |Z)=Pr(ε1 > s, ε2 > t)

does not depend on Z. Recall that T1 is subject to censoring by T2. Hence, the transformed
T̃ 1(�1) is subject to censoring by

h1(T2)−�′
1Z=h1 ◦h−1

2 (T̃ 2(�2)+�′
2Z)−�′

1Z,

which depends on Z. Under the new scale of (T̃ 1(�1), T̃ 2(�2)), the observable region can be
written as

RZ
T (�1, �2)={(s, t) : s ≤h1 ◦h−1

2 (t +�′
2Z)−�′

1Z}.

As the proposed log-rank-type statistics require that observed variables in the analysis have
a common distribution, we can only use those which lie in intersection of RZ

T (�1, �2) for all
possible values of Z. To attain this, the final observable region becomes

{
(s, t) : s ≤min

all z
[h1 ◦h−1

2 (t +�′
2z)−�′

1z]
}
.

The mechanism of deleting originally non-censored observations, which are located outside
the intersection, is called artificial censoring.

Figures 1 and 2 provide graphical illustrations for two-sample comparison without external
censoring under h1(t)= t, h2(t)= log(t) and �0

1 =�0
2 =1. That is, we assume a combination of

LS and AFT models on T1 |Z and T2 |Z respectively. Under the scale of the transformed
variables, the horizontal axis is h1(T1)−�0

1Z and the vertical is h2(T2)−�0
2Z. Figure 1 shows

the censoring lines for the two groups with Z =0 and 1. Notice that the censoring lines
are not straight lines if h1(t) /=h2(t). For semi-competing risks data, the observable region is

−1 0 1 2 3 4 5

1
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h1(t)−Z = t−Z

h 2
(t

) 
– 

Z
 =

 lo
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 –

 Z Z =1

Z = 0

Fig. 1. The censoring lines for the two groups drawn in the transformed scale with h1(t)= t, h2(t)= log(t)
and �0

1 =�0
2 =1.
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Fig. 2. The region of being artificially censored (shaded) drawn in the transformed scale.

located above the censoring line. We shall use the solid curve shown in Fig. 2 as the artificial
censoring line as only observations located above this line would have a common distribution
that is independent of Z and hence can be analysed by non-parametric methods which require
independent and identically distributed (i.i.d.) observations. The shaded region in Fig. 2 is the
part that has been artificially censored. Note that Lin et al. (1996) assumed that h1(t)=h2(t)
which results in parallel straight lines for different groups. Therefore, the artificial censoring
formula becomes very simple in their case. Later work, such as Chang (2000), Ghosh & Lin
(2003), Lin & Ying (2003) and Peng & Fine (2006) are all based on this simple formula for
artificial censoring derived under h1(t)=h2(t).

Finally, we reorganize the above idea in an algebraic way. To let (T̃ 1(�1), T̃ 2(�2)) fall into
the intersection, T̃ 1(�1) should be subject to further right censoring by

H�1,�2 (T̃ 2(�2))= inf
z∈�

h1 ◦h−1
2 (T̃ 2(�2)+�′

2z)−�′
1z

= inf
z∈�

h1 ◦h−1
2 (h2(T2)−�′

2Z+�′
2z)−�′

1z, (6)

where � denotes the set of all possible values of Z. Because the joint distribution of (T̃ 1(�0
1),

T̃ 2(�0
2)) and the distribution of H�1,�2 (T̃ 2(�0

2)) do not depend on Z, the distribution of the
observed (after artificial censoring) variable T̃ 1(�1)∧H�1,�2 (T̃ 2(�2)) also does not depend on
Z at the true parameter values (�0

1, �0
2).

Now, we propose an estimating function for �1 based on semi-competing risks data
(Xi , Yi , �1i , �2i , Zi), i =1, . . ., n. Define C̃(�2)=h2(C) − �′

2Z. We let T̃ 1(�1)=h1(T1) − �′
1Z be

subject to censoring by H�1,�2 (T̃ 2(�2))∧H�1,�2 (C̃(�2)), where

H�1,�2 (t)= inf
z∈�

h1 ◦h−1
2 (t +�′

2z)−�′
1z.

Define the following hypothetical observations

Y̌i(�1, �2)=H�1,�2 (T̃ 2i(�2)∧ C̃i(�2))=H�1,�2 (h2(Yi)−�′
2Zi)=H�1,�2 (Ỹ i(�2)),

X̃ i(�1, �2)={h1(T1i)−�′
1Zi}∧Y̌i(�1, �2)={h1(Xi)−�′

1Zi}∧Y̌i(�1, �2)
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and �̃i = I (X̃ i = T̃ 1i)= I (T̃ 1i ≤ Y̌i). Note that �̃i =1 implies that �1i =1 but not vice versa.
Those observations with �1i =1 but �̃i =0 are artificially censored in the analysis. To estimate
�= (�′

1, �′
2)′, we first solve U2(�2)=0 to get �̂2. Then we solve

U1(�1, �̂2)= 1
n

n∑
i =1

�̃i

{
Zi −

∑n
j =1 I (X̃ j(�1, �̂2)≥ X̃ i(�1, �̂2))Zj∑n

j =1 I (X̃ j(�1, �̂2)≥ X̃ i(�1, �̂2))

}
=0 (7)

to get the estimate �̂1.
Denote �̂= (�̂

′
1, �̂

′
2)′ and �0 = (�0

1
′
, �0

2
′
)′ as the true parameter values. In Appendix 1, we show

that n1/2(�̂−�0) converges to a mean zero normal distribution. To estimate the limiting covari-
ance matrix, we use a resampling technique as in Lin et al. (1996) which can avoid tedious
derivation of � given in (A.7). The resampling algorithm is summarized as follows. Given the
observed data, we generate a set of i.i.d. standard normal random variables Gi , i =1, 2, . . ., n,
and solve the estimating equations

U∗
2(�2)=n−1/2

n∑
i =1

W2i(�2)Gi =0

and

U∗
1(�1, �∗

2)=n−1/2
n∑

i =1

W1i(�1, �∗
2)Gi =0

to obtain �∗, where Wli ; l =1, 2; are given in (A.5) and (A.6). The above procedure is
repeated, say, B times and the empirical distribution of �∗

j , j =1, . . ., B, where �∗
j is the solution

at the jth time, would provide a good approximation for the distribution of �̂ when B is large.
Confidence region of �0 can be constructed either using the normality result, which requires
calculating the sample covariance matrix of �∗

j , j =1, . . ., B, or based on the percentiles of
�∗

j , j =1, . . ., B.

2.2. Inference of �1 when T2 follows a transformation model

Now, we consider the situation that T2 follows a transformation model in which h2(t)
becomes unknown but the distribution of ε2 is completely specified. The difficulty of this
extension comes from the fact that H�1,�2 (t) involves specification of h2(t) or h−1

2 (t) which
is unknown. Now, we demonstrate how to recover this information. Denote the known
survival function of ε2 as S̃2(t)=Pr(ε2 > t) and define the baseline survival function of T2

as S2(t)=Pr(T2 > t |Z =0). As S2(h−1
2 (t))= S̃2(t), it follows that h−1

2 (t)=S−1
2 ◦ S̃2(t) and

h2(t)= S̃
−1
2 ◦S2(t). Therefore,

H�1,�2 (t)= inf
z∈�

h1(S−1
2 (S̃2(t +�′

2z)))−�′
1z

which is still unknown as S2(t) is unknown. However, if we replace H�1,�2 (t) by a uniformly
consistent estimator Ĥ�1,�2 (t), then the previous proposed methods are still valid asymptoti-
cally. Therefore, when T2 follows a transformation model, we first find Ŝ2(t), which is a
uniformly consistent estimator for S2(t), by a conventional univariate method. Let Ũ2(�2)
denote U2(�2) with h2(t) being replaced by ĥ2(t)= S̃2

−1 ◦ Ŝ2(t), and let Ũ1(�) denote U1(�) with
H�1,�2 (t) being replaced by

Ĥ�1,�2 (t)= inf
z∈�

h1(Ŝ
−1
2 (S̃2(t +�′

2z)))−�′
1z.

Then, we can follow the approach in the previous section by solving the estimating equations
Ũ2(�2)=0 and Ũ1(�)=0.

© 2009 Board of the Foundation of the Scandinavian Journal of Statistics.
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Theorem 1
Assume that when n → ∞, | Ŝ2(t) − S2(t) | → 0 in probability uniformly on the interval [0, t]
for all t > 0. Moreover, assume that the covariate values are bounded. Let �̃1 and �̃2 denote the
solutions to estimating equations Ũ2(�2)=0 and Ũ1(�)=0. Then �̃1 and �̃2 has the same asymp-
totic distribution given in the previous sections where in the variance formula h2(t) and H�1,�2 (t)
are replaced correspondingly by ĥ2(t) and Ĥ�1,�2 (t).

The estimator Ŝ2(t) can be obtained using existing methods developed for the imposed
transformation model. For example, under the proportional hazards model, one may
estimate S2(t) by

Ŝ2(t)=
∏
Yi≤t

{
1− exp(�̂

′
2Zi)∑n

j =1 I (Yj ≥Yi) exp(�̂
′
2Zj)

}�2i exp(−�̂
′
2Zi )

(8)

at the uncensored death times Yi (Kalbfleisch & Prentice, 2002, p. 116). Between these jump
points, the estimator can be connected linearly to get a continuous monotone estimator.
Under the proportional odds model, one may estimate S2(t) by the maximum likelihood esti-
mator of Murphy et al. (1997). In the special case of two-sample comparison with Z taking
values of 0 and 1, a simple consistent estimator valid for all transformation models is the
product-limit estimator (Kalbfleisch & Prentice, 2002, p. 16) using only the observations in
the baseline group:

Ŝ2(t)=
∏
u≤t

{
1−

∑n
j =1 I (Yj =u, �2i =1, Zj =0)∑n

j =1 I (Yj ≥Yi , Zj =0)

}
.

2.3. Examples

Now, we discuss some examples to illustrate the formula for constructing the artificial
censoring line.

Example 1. Both are LS models (hj(t)= t, j =1, 2). It follows that H�1,�2 (t)= infz∈�(t −
{�1 −�2}′z). Lin et al. (1996) considered the case of two-sample comparison under this model
assumption. It is obvious to see that when Z =0, 1, H�1,�2 (t)=min{t + (�2 −�1), t}.

Example 2. Both are accelerated failure time models (hj(t)= log(t), j =1, 2). It follows that
H�1,�2 (t)= infz∈�(t−{�1 −�2}′z). Chang (2000) considered the case of two-sample comparison
under this model assumption. When Z =0, 1, H�1,�2 (t)=min{t + (�2 −�1), t}.

Example 3. T1 follows an LS model and T2 follows an AFT model (h1(t)= t; h2(t)= log(t)).
It follows that H�1,�2 (t)= infz∈�{et +�′

2z −�′
1z}. When Z =0, 1, H�1,�2 (t)=min{et +�2 −�1, et}.

Example 4. T1 follows an AFT model and T2 follows an LS model (h1(t)= log(t); h2(t)= t).
It follows that H�1,�2 (t)= infz∈�{log(t +�′

2z)−�′
1z}. When Z =0, 1, H�1,�2 (t)=min{log(t +�2)−

�1, log(t)}.

Example 5. T1 follows an LS model and T2 follows a proportional hazards model. We have
h1(t)= t and ε2 follows the extreme value distribution with h2(t) being unspecified. The
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survival function of ε2 is S̃2(t)= exp(− exp(t)). The most well-known estimator of S2(t), under
the PH model, is the Nelson–Aalen estimator (8). Therefore,

Ĥ�1,�2 (t)= inf
z∈�

Ŝ
−1
2

[
exp{− exp(t +�′

2z)}]−�′
1z.

2.4. Computational method for multiple covariates

We discuss the computational problem of solving the estimating equations when there are
multiple covariates. When there is only one covariate, the root �̂j , j =1, 2, can be found by a
simple linear search using the monotonicity of � in the estimating statistic. When there are
multiple covariates, searching for the root in a high-dimensional space may be time consum-
ing. Here, we modify the techniques proposed by Jin et al. (2003) who considered solving the
weighted version of the following estimating equations

U2(�2)= 1
n

n∑
i =1

�2iQi(�2)

{
Zi −

∑n
j =1 I (Ỹ j(�2)≥ Ỹ i(�2))Zj∑n

j =1 I (Ỹ j(�2)≥ Ỹ i(�2))

}
= 0,

where the Qi(�2) are the weights. For Gehan weights with

Qi(�2)= 1
n

n∑
j =1

I (Ỹ j(�2)≥ Ỹ i(�2)),

Jin et al. (2003) showed that this is equivalent to minimizing the quantity

n∑
i =1

n∑
j =1

�2i |Ỹ i(�2)− Ỹ j(�2)|+
∣∣∣∣∣∣M −�′

2

n∑
i =1

n∑
j =1

�2i(Zi −Zj)

∣∣∣∣∣∣
where M is an extremely large number. This minimization can be achieved by using existing
methods of quantile regression.

Our proposed estimating equation for �2 corresponds to Qi(�2)=1. Jin et al. (2003)
suggested to consider

Q̃i(�2)= Qi(�2)n∑n

j =1
I (Ỹ j(�2) ≥ Ỹ i(�2))

which is the ratio of the weights versus the Gehan weights. Then finding the root of the
estimating equation is equivalent to minimizing

n∑
i =1

n∑
j =1

�2i Q̃i |Ỹ i(�2)− Ỹ j(�2)|+
∣∣∣∣∣∣M −�′

2

n∑
i =1

n∑
j =1

�2i Q̃i(Zi −Zj)

∣∣∣∣∣∣
for Q̃i independent of �2. When Q̃i(�2) depends on �2, Jin et al. (2003) proposed the following

iterative algorithm: first start with an approximate solution �̂
(0)
2 (for example, the root using

Gehan weights) and then update �̂
(k)
2 by minimizing

n∑
i =1

n∑
j =1

�2i Q̃i(�̂
(k−1)
2 )|Ỹ i(�2)− Ỹ j(�2)|+

∣∣∣∣∣∣M −�′
2

n∑
i =1

n∑
j =1

�2i Q̃i(�̂
(k−1)
2 )(Zi −Zj)

∣∣∣∣∣∣ .
In our case, the estimation equation for �1 is more complicated as it contains �2 as

well as �1 and �̃i depends on both parameters. We propose to modify the iterative algorithm
suggested by Jin et al. (2003) as follows. First, fit the estimating equation for �2 and then
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treat �̂2 as known in the following steps. Secondly, start with an approximate solution �̂
(0)
1 and

then update �̂
(k)
1 by minimizing

n∑
i =1

n∑
j =1

�̃i(�̂
(k−1)
1 )Q̃i(�̂

(k−1)
1 )|X̃ i(�̂1)− X̃ j(�̂1)|+

∣∣∣∣∣∣M −�′
1

n∑
i =1

n∑
j =1

�̃1i(�̂
(k−1)
1 )Q̃i(�̂

(k−1)
1 )(Zi −Zj)

∣∣∣∣∣∣ .
In the updating, notice that we have calculated values of �̃i and Q̃i at the previous estimation

�̂
(k−1)
1 and fixed their values. In the minimization, the value of �1 affects only quantities like

X̃ i and X̃ j .

Similar to the estimator in Jin et al. (2003), if �̂
(k)
1 converges when k →∞, then it converges

to the solution of (7). And for any fixed k, �̂
(k)
1 is consistent and asymptotically normal. These

results can be proved similarly as in Jin et al. (2003). Notice that the main difference here
is that we are using �̃i which also depends on �1 unlike �1i . However, we can write �̃i =�1i�̌i

where �̌i = I{{h1(Xi)−�′
1Zi}≤Y̌i(�1, �2)} is the indicator for artificial censoring. Then solving

(7) is related to minimizing

n∑
i =1

n∑
j =1

�1i �̌i Q̃i |X̃ i − X̃ j |+
∣∣∣∣M −�′

1

n∑
i =1

n∑
j =1

�1i �̌i Q̃i(Zi −Zj)

∣∣∣∣.
We can then consider �̌i Q̃i as the new weight function replacing the quantity Q̃i in each step
of the proofs in Jin et al. (2003).

3. Model checking and model selection

The model assumptions (1)–(3) can be examined using the residual martingales defined in
(A.3) and (A.4). Specifically, one can estimate M1i and M2i by

M̂1i(t; �̂)=N1i(t; �̂)−
∫ t

−∞
I{X̃ i(�̂)≥u}d�̂1(u; �̂),

M̂2i(t; �̂2)=N2i(t; �̂2)−
∫ t

−∞
I{Ỹ i(�̂2)≥u}d�̂2(u; �̂2),

where

�̂1(t;�)=
∫ t

−∞

∑n
i =1 dN1i(t;�)∑n

j =1 I{X̃ j(�)≥u} , �̂2(t;�2)=
∫ t

−∞

∑n
i =1 dN2i(t;�2)∑n

j =1 I{Ỹ j(�2)≥u}
are the Nelson–Aalen estimators for the cumulative hazard functions of g1(t) and g2(t) given
in (A.1) and (A.2) in Appendix 1, respectively. The ideas presented here are motivated by the
papers of Lin et al. (1996) and Lin et al. (1993, 2002).

When the model assumptions are correctly specified, the martingale residuals (M̂1i(t; �̂),
M̂2i(t; �̂2)), i =1, . . ., n, are distributed around zero. Define the following vector of functions
based on the marginal residuals

U(t1, t2;�)=
(

U1(t1;�)
U2(t2;�2)

)
=n−1/2

n∑
i =1

(
ZiM̂1i(t1;�)
ZiM̂2i(t2;�2)

)
.

Under the assumed models, U(t1, t2; �̂) converges to a mean zero Gaussian process. The corres-
ponding limiting Gaussian process distribution can be approximated by applying similar
resampling techniques as introduced earlier. Let
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Û(t1, t2)=U(t1, t2; �̂)−U(t1, t2;�∗)

+n−1/2
n∑

i =1

Gi

⎛
⎜⎜⎜⎝

∫ t1

−∞

{
Zi −

∑n
j =1 I (X̃ j(�̂)≥u)Zj∑n

j =1 I (X̃ j(�̂)≥u)

}
dM̂1i(u; �̂)

∫ t2

−∞

{
Zi −

∑n
j =1 I (Ỹ j(�̂2)≥u)Zj∑n

j =1 I (Ỹ j(�̂2)≥u)

}
dM̂2i(u; �̂2),

⎞
⎟⎟⎟⎠ ,

where the definitions of Gi and �∗ are given at the end of section 2.1.
Graphic diagnostics can be conducted by plotting U(t1, t2; �̂) together with a few, say

20–30, re-sampled realizations of Û(t1, t2). For the simulations presented in section 4, we used
formal lack-of-fit tests based on the deviation statistics supt |U1(t; �̂)| and supt |U2(t; �̂2)|. We
obtain approximate P-values of the tests based on the corresponding empirical probabilities
by resampling the process Û(t1, t2) many times. Theoretical arguments about the validity of
this approach are given in appendix 1.

In practice, we may be more interested in selecting the best fit versions of (1) and (2) among
several model candidates. We propose a two-stage procedure for selecting the best fit covari-
ate models based on the P-values of the above lack-of-fit tests. Assume that the candidate
covariate models for T1 are {M (1)

1 , . . ., M (K1)
1 }, and the candidate covariate models for T2

are {M (1)
2 , . . ., M (K2)

2 }, where M (k)
1 and M (k)

2 have forms of models (1) and (2) respectively.
Let p(k)

2 denote the P-value based on supt |U2(t; �̂2)| for testing model M (k)
2 . First, we select

the covariate model M (k)
2 such that p(k)

2 =maxK2
i =1 p(i)

2 . For the second step, we compute the
lack-of-fit tests for models {M (1)

1 , . . ., M (K1)
1 } assuming model M (k)

2 and denote the computed
P-values as {p(1)

1 , . . ., p(K1)
1 } respectively. We then select the covariate model M (j)

1 such that
p(j)

1 =maxK1
i =1 p(i)

1 .
The following arguments show that the proposed two-stage procedure is consistent for

model selection. When M (i)
2 is the correct model, the asymptotic analysis in appendix 1 shows

that p(i)
2 follows a standard uniform distribution. When M (i)

2 is not the correct model, the
asymptotic analysis shows that U2(t; �̂2) is the sum of a non-zero function plus the martin-
gale of a higher order so that p(i)

2 →0 as n→∞. Hence, the selected model M (k)
2 is consistent.

Notice that there may be more than one correct model. For example, with the survival time
following an exponential distribution, the accelerated failure time model M (1)

2 and the PH
model M (2)

2 are both correct. In this example, the consistency means that with probability
one, as n →∞, k =1 or k =2. Similarly, the selected model in the second step M ( j)

1 is also
consistent.

The consistency condition means that the model selection procedure will select the correct
model if at least one of the candidate model is indeed correct. When all models are incorrect,
then all P-values go to zero asymptotically. In other words, if we finally chose a model with
a small P-value, it is still a better fit model among all the incorrect alternatives.

4. Numerical results

4.1. Simulation studies

Monte Carlo simulations were conducted to check finite-sample performance of the proposed
procedures. The joint distribution of (ε1, ε2) was generated from the Clayton family of the form,

S(t1, t2)=Pr(ε1 > t1, ε2 > t2)= (S1(t1)−� +S2(t2)−� −1)−1/�

where S1(t1)=Pr(ε1 > t1), S2(t2)=Pr(ε2 > t2) and �> 0. The parameter � is related to Kendall’s
tau (�) such that �=�/(2+�). The covariate Z was generated from U (0, 1). With Z and
(ε1, ε2), (T1, T2) were obtained after specifying the forms of hj(·), j =1, 2, and the parameter
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values. The independent censoring variable C was generated from U (0, 20). Finally with
(T1i , T2i , Ci , Zi), we can create semi-competing risks data (Xi , Yi , �1i , �2i , Zi) for i =1, . . ., n.
Two levels of association are considered, �=0.25 and 0.50. Two sample sizes with n=100
and 500 are evaluated.

In Table 1, we evaluate the performance of the proposed method and compare it with
existing methods. In the first part of Table 1, T1 follows the LS model and T2 follows both
AFT and PH models. Specifically for the progression time T1, we set h1(t)= t, �0

1 =1 and
ε1 ∼ Exp(1): the exponential distribution with parameter 1. For the survival time T2, we
set h2(t)= log(t), �0

2 =1 and T2 |Z =0 to follow Exp(2.1). Hence, ε2 follows an extreme
value distribution and T2 are both AFT and PH models. We compare our proposed inference
procedure with those appeared previously in the literature. As the procedure proposed by
Robins (1995b) cannot deal with continuous covariates, we consider the method by Lin et al.
(1996). Specifically, we evaluate three fits for (T1, T2), namely (A): (LS, AFT), (B): (AFT,
AFT) and (C): (LS, PH). To analyse the second fit (B), we adopt the method proposed by Lin
et al. (1996) which assumes h1(t)=h2(t)= t but, here, is a wrong specification for T1. The
proposed methods presented in sections 2.1 and 2.2 are applied to analyse fits (A) and (C),
respectively, both of which are correctly specified.

The results of these three fits based on 1000 simulation runs are summarized in the first
half of Table 1. For estimating �2, fit (A) and fit (B) yield the same and correct results.
However, for estimating �1, fit (B) assumes a wrong model on T1 which results in larger bias
and variance and also lower coverage probability compared with the correct fit (A). As the
sample size increases from n=100 to 500, the difference between the two fits increases too.

Table 1. Finite-sample performance of the proposed inference procedures based on 1000 simulation runs

Coverage
True model Fitted model Bias Variance of C.I. (%)

Distribution
(correlation) n T1 T2 T1 T2 �1 �2 �1 �2 �1 �2

Exponential 100 LS AFT LS AFT −0.007 −0.013 0.139 0.165 96.3 96.0
(�=0.25) (PH) AFT AFT −0.265 −0.013 0.087 0.165 88.8 95.5

LS PH −0.002 0.042 0.138 0.187 95.5 94.3

Exponential LS AFT LS AFT −0.037 −0.010 0.136 0.176 97.0 92.5
(�=0.50) (PH) AFT AFT −0.321 −0.009 0.077 0.185 85.3 93.5

LS PH −0.025 −0.056 0.136 0.195 95.3 92.8

Exponential 500 LS AFT LS AFT 0.016 0.021 0.027 0.031 96.5 94.5
(�=0.25) (PH) AFT AFT −0.256 0.022 0.017 0.031 56.3 95.3

LS PH 0.019 0.040 0.027 0.031 95.0 95.0

Exponential LS AFT LS AFT 0.015 −0.009 0.028 0.035 95.3 93.5
(�=0.50) (PH) AFT AFT −0.311 −0.009 0.017 0.035 35.0 93.0

LS PH −0.009 0.007 0.028 0.037 95.5 93.8

Log-normal 100 AFT PH AFT PH 0.057 −0.087 0.231 0.193 94.3 94.5
(�=0.25) AFT AFT 0.069 0.124 0.369 0.130 95.0 92.3

Log-normal AFT PH AFT PH 0.077 −0.065 0.248 0.191 91.5 91.5
(�=0.50) AFT AFT 0.069 0.157 0.483 0.122 94.3 90.3

Log-normal 500 AFT PH AFT PH 0.009 −0.005 0.051 0.030 95.5 94.3
(�=0.25) AFT AFT −0.015 0.126 0.055 0.021 96.8 86.0

Log-normal AFT PH AFT PH 0.013 −0.008 0.055 0.032 95.3 93.5
(�=0.50) AFT AFT −0.035 0.121 0.064 0.024 98.3 89.0
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Comparing fit (A) with fit (C) which are both correct, we see that fit (C) produces larger
bias in the estimation of �2. A possible explanation is that fit (C) involves extra estimation
of the baseline survival function S2(t). Nevertheless this difference does not carry over to the
estimation of �1. In fact for estimating �1, the performances of fits (A) and (C) are about the
same. When the sample size increases, the difference in the biases of �2 decreases.

In the second half of Table 1, the error distributions (ε1, ε2) were chosen to make
(T1, T2) |Z =0 to follow log-normal distributions marginally. The regression model for
T1 follows the AFT model with h1(t)= log(t) and �0

1 =1 and the model for T2 follows the PH
model with �0

2 =1. The censoring variable C follows U (0, 20). Note that under this setting, the
PH model is no longer equivalent to the AFT model. Two model fits are considered. Fit (D)
assumes AFT on T1 and the PH model on T2 which is the correct specification. Fit (E)
assumes AFT model on both T1 and T2 which is a wrong specification but the best possible
fit under the construction of Lin et al. (1996).

According to the second half of Table 1, we can see that fit (E), conducted under a wrong
model specification on T2, results in a much larger bias of �̂2 than the correct fit (D). The
coverage probability of the confidence interval for �2 is much lower than the nominal level
95% and becomes worse as the sample size increases from n=100 to 500. The model
mis-specification on T2 has little effect on the estimation of �1 when the sample size is small.
When n=100, fits (D) and (E) have similar performance. Fits (D) and (E) both specify the
correct regression models on T1 and hence the estimations of �1 are essentially the same for
the two fits. As the sample sizes increases to n=500, the difference in the ways of artificial
censoring becomes more obvious. The model mis-specification on T2 by fit (E) also leads to
a larger bias of �̂1 and less reliable results in interval estimation. For the case with n=500
and �=0.50, the 95% confidence interval for �1 has a coverage of 98.3%. This exceeds the
nominal level 95% more than the simulation variation, indicating that the variance estimator
of �̂1 in fit (E) is too big.

We also evaluate the performance of the proposed model testing method. Similar to
Lin et al. (1996), we first test model assumption (2) based on supt |U2(t; �̂2)| and then test
assumption (1) based on supt |U1(t; �̂)|. As mentioned earlier, fit (B) mis-specifies model (1)
while correctly selects model (2). At �=0.05 level of significance and n=100, the test using
supt |U1(t; �̂)| rejects this wrong assumption on model (1) 18.3% of the times for �=0.25 and
19.8% of the times for �=0.50. Although the performance looks unsatisfactory at n=100,
the rejection rate becomes 100% for both cases of �=0.25 and 0.50 when the sample size
increases to n=500. Fit (E) violates the model assumption (2) instead. At �=0.05 and n=100,
the test using supt |U2(t; �̂2)| rejects this wrong assumption on model (2) 1.8% of the times for
�=0.25 and 1.8% of the times for �=0.50. When the sample size increases to n=500, the
rejection rate becomes 29.0% of the times for �=0.25 and 24.3% of the times for �=0.50. So,
we can see that it is harder to detect the violation of assumption (2) by fit (E). Although the
PH model and AFT model are different for log-normal marginal, the difference is not very big
and require large sample size to detect. The results for fits (B) and (E) both showed that the
power to detect model violation improves when the sample size increases from n=100 to 500.

We then evaluate the model selection procedure proposed in section 3 and summarize the
results in Table 2. The first step is to select a model for T2 based on supt |U2(t; �̂2)| and then a
model for T1 based on supt |U1(t; �̂)|. In each step, the model which gives the highest P-value
is chosen. The results shows that the method proposed can pick the correct model most of
the times. When n=100, the wrong fit (B) is selected only 4.3% (�=0.25) and 2.8% (�=0.50)
of the times. When n=500, the wrong fit (B) is never chosen. The wrong fit (E) is selected
31.2% (�=0.25) and 31.0% (�=0.50) of the times when n=100. The error rate is reduced to
9.0% (�=0.25) and 13.0% (�=0.50) when n=500.
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Table 2. Finite-sample performance of the proposed model selection method, which
picks the models with highest P-values, based on 1000 simulation runs

True model Fitted model Proportion (%)
chosen as the

Distribution (correlation) n T1 T2 T1 T2 true model

Exponential (�=0.25) 100 LS AFT LS AFT 36.4
(PH) AFT AFT 4.3

LS PH 59.3
Exponential (�=0.50) LS AFT LS AFT 31.7

(PH) AFT AFT 2.8
LS PH 65.5

Exponential (�=0.25) 500 LS AFT LS AFT 30.2
(PH) AFT AFT 0.0

LS PH 69.8
Exponential (�=0.50) LS AFT LS AFT 32.0

(PH) AFT AFT 0.0
LS PH 68.0

Log-normal (�=0.25) 100 AFT PH AFT PH 68.8
AFT AFT 31.2

Log-normal (�=0.50) AFT PH AFT PH 69.0
AFT AFT 31.0

Log-normal (�=0.25) 500 AFT PH AFT PH 91.0
AFT AFT 9.0

Log-normal (�=0.50) AFT PH AFT PH 87.0
AFT AFT 13.0

4.2. Data analysis

The proposed methodology was applied to analyse the data set about bone marrow transplant
given in the book by Klein & Moeschberger (2003). The study included 137 patients who
received bone marrow transplant in four hospitals from 1984 to 1989. After transplantation,
some patients experienced relapse, while others died without relapse. The patients were clas-
sified into three groups: acute lymphoblastic leukaemia (ALL), acute myelocytic leukaemia
low risk (AML-Low) and AML high risk (AML-High). A more detailed description of the
data is given in the book.

To code the three risk groups, we created two covariates: Z1 =1 for patients in the ALL
group and Z1 =0 otherwise; Z2 =1 for AML-Low patients and Z2 =0 otherwise. Therefore,
the AML-High group was chosen as the baseline group with Z1 =Z2 =0. Let T1 denote the
time to relapse, T2 the time to death and T1 ∧T2 the time to the first event of relapse or death.
We would like to investigate whether the three groups differed in T1, T2 and T1 ∧ T2. Note
that regression analysis for the latter two variables can be performed using univariate
methods without dependent censoring. The analysis based on T1 allows us to investigate
whether the relapse time for patients in the three groups were different when the group effect
on T2 had been taken into account.

We fitted six combinations of models (1) and (2). The estimators of � were obtained using
the methods discussed in section 2.4. Then the method proposed in section 3 was applied
to select the best model combination. For each fitted model, we report the P-values (in the
parentheses) by using the proposed resampling algorithm based on supt |U1(t; �̂)| and
supt |U2(t; �̂2)|. The results are model (i): LS on T1 (0.828) and LS on T2 (0.350); model
(ii): LS on T1 (0.988) and AFT on T2 (0.275); model (iii): LS on T1 (0.968) and PH on T2

(0.880); model (iv): AFT on T1 (0.970) and LS on T2 (0.350); model (v): AFT on T1 (0.788)
and AFT on T2 (0.255); model (vi): AFT on T1 (0.750) and PH on T2 (0.880). As the sample
size is small, we see that none of the six combinations was rejected by the model checking
procedure. Based on the P-value for each fitted model as a measure for the goodness of fit,
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we selected for the proportional hazard model for T2 and the LS model for T1. That is, we
chose model combination (iii).

Under the proportional hazards model for T2, we obtained �̂
′
2 = (�̂21, �̂22)= (0.42, 1.12)

which implies that AML high-risk patients tended to have the shortest survival time (with 1.5
and 3.1 times higher risk of death compared with ALL and AML-Low patients respectively).
Applying the bootstrap procedure, the resulting 95% confidence interval for �22 does not con-
tain zero, indicating that the difference in survival time between AML-Low and AML-High
patients is statistically significant. Under the LS model for T1, �̂

′
1 = (�̂11, �̂12)= (−3.17, 30.95),

but both estimates are not significantly different from zero.
For illustration, we also analysed T1 ∧ T2 by directly modifying the methodology devel-

oped for T2. Two regression models were fitted. The first one assumed a proportional hazards
model on T1 ∧T2 and the estimated parameters are given by (0.49, 1.51). The 95% confidence
interval for the second component does not contain zero, indicating a significant effect: the
risk of experiencing either relapse or death for AML-High patients was 4.5 times higher than
that for AML-Low patients. The second analysis assumed an LS model on T1 ∧T2 with esti-
mated parameters (20, 111). The 95% confidence interval for the second component does
not contain zero either. We see that the analysis based on T1 ∧ T2 is similar to that based
on T2 as previous analysis shows that the group effect on T1 is less obvious than that on
T2. In situations where a covariate has opposite effects on the two events, the analysis based
on T1 ∧T2 may be misleading. As mentioned in the Introduction, we can fit covariate effect
model directly on the identifiable quantities such as T1 ∧ T2 or T1 only for those T1 ≤ T2.
While these quantities have clear clinical meaning, the covariate effect on them compounds
the effects on both T1 and T2. As this example shows, we do not know if covariate effect
on T1 ∧T2 is simply a reflection of its effect on T2. For better biological understanding, we
are also interested in the ‘net’ effect on T1 with effect on T2 removed. This ‘net’ effect has
to come from analysis directly on T1.

The data were re-analysed by merging the ALL and AML-High patients into one category.
Specifically, let Z =1 be the indicator for AML low-risk patients and Z =0 for the rest. The
two-group analysis chose the PH model for T2 with P =0.846 and the AFT model for T1

with P =0.706. Note that the P-value for the previous LS model for T1 became 0.213. For
this model combination we obtained �̂1 =1.66 with 95% confidence interval (0.96, 3.32) and
�̂2 =0.91 with 95% confidence interval (0.46, 1.46). Notice the bootstrap confidence intervals
do not centre at the point estimates. Both intervals do not contain zero which shows that
the differences of the two groups in both relapse time and survival time were significant.
The AML-Low patients had longer survival time T2 with an average of 40% risk of death of
other patients. They also tended to have longer relapse time T1. Relapse times for AML-Low
patients on average were 66% longer than those of other patients. Several regression models
(i.e. PH, LS and AFT) were also applied to analyse T1 ∧T2, all the results show significant
covariate effects. However, without the information provided by the analysis of T1, it is hard
to trace the source of the effect. The covariate may affect T2 only and the effect shows up
for T1 ∧T2 also.

We also evaluated whether patient’s age, a continuous covariate, affected the relapse time
and survival time. Again, we considered the six covariate effects model combination (i)–(vi)
above for patient age. We selected the AFT model with P =0.86 for measuring the age effect
on T2. Note that the P-values for the LS model and PH model were 0.69 and 0.54 respec-
tively. So, they are also good fits for this data set. Then, we chose the AFT model for the
relapse time which gives P =0.97. Note that the LS model also fits well with P =0.95. Under
model combination (v), the estimated parameters are �̂1 =−0.027 and �̂2 =−0.029, but the
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95% confidence intervals for the two parameters contain zero. So, age does not have statis-
tically significant effects for this data set.

5. Concluding remarks

Traditionally, semi-competing risks data are analysed under the framework of multi-state
models in which the transition rates between the states are the quantities of interest.
If the failure time to the intermediate event is of interest, one may study Pr(T1 ∧ T2 > t) or
Pr(T1 ≤ t, T1 ≤T2), both of which, however, are also functions of T2. In practice, covariates
may affect T1 and T2 in a different way. Our method estimates the ‘net’ covariate effect on
T1 that provides information not available through the multi-state model. To illustrate, con-
sider a covariate that reduces the survival time T2 but does not affect occurrence of the
disease time T1. Then the multi-state analysis will show that the quantities Pr(T1 ∧ T2 > t),
Pr(T1 ≤ t, T1 ≤T2) and Pr(T1 ≤T2) are all reduced. We cannot see from the multi-state analy-
sis the fact that the covariate does not affect the biological process related to the occurrence
of the disease time T1. However, zero ‘net’ covariate effect will provide an indication of this
fact. For another example, suppose practitioners are concerned about the side effect of some
treatment (say, high-dose chemotherapy) on cancer patients which may increase the risk of
death due to other reasons. If the side effect is too serious, the overall survival time T2 may be
shortened, indicating that the treatment is not clinically beneficial in its current form.
However, how this treatment affects the cancer recurrence time T1 after the surgery would
influence the decision making on whether the treatment has potential for future improvement.
If the ‘net’ treatment effect shows that T1 is indeed prolonged, the treatment carries some
potential value and future research may be devoted to reduce the side effects. Otherwise, there
is no need to study the treatment further.

We have provided a rich class of model choices for describing the covariate effects on both
events. A two-stage model checking procedure is also proposed to justify the model assump-
tions which have nice large sample properties. When the sample size is small, the test may
accept several models at the same time but the P-value for a fitted model provides a reliable
measure for the goodness-of-fit. In our simulations, such a selection strategy seems to work
quite well even for small samples.

The purpose of artificial censoring is to create homogeneous observations that can be used
in non-parametric statistics such as the suggested log-rank-type statistic U1(�). To obtain a
set of observations with the same distribution, what we actually need for U1 is that the hazard
function g1(t) in (A.1) does not depend on Z which is a weaker condition than the assump-
tion in (3). As discussed in other related papers, artificial censoring may result in substantial
loss in efficiency if the range of Z spreads too widely. For our method when the artificial
censoring variable H�1,�2 (T̃ 2(�2)) becomes too small, the proportion of artificially censored
observations will be excessive. Lin & Ying (2003) suggest using stratification to alleviate the
problem of loss in efficiency. Peng & Fine (2006) proposed to apply artificial censoring to
a different type of statistic constructed by pairwise comparison that can keep more
available data than the log-rank statistics. Note that the method of Peng & Fine (2006) is
originally developed under assumptions (1) and (2) with h1(t)=h2(t)= t and (3). We think
that the proposed idea of generalizing the artificial censoring technique to more flexible
regression settings can also be applied to their method. We will leave this extension as a
future project.

To simplify the notations, we have used Z to denote the covariates that affect both T1 and
T2. Consider the situation that T1 and T2 are affected by different covariates Z1 and Z2. Let
Z denote the union of Z1 and Z2. When solving the estimating equation (4) for T2, we only
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solve for the components of �2 that correspond to the covariates Z2 by restricting the other
components to be zero. Similar arguments apply to the estimation of �1.
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Appendix 1: asymptotic analysis under the linear regression model

We will extend the proof of Lin et al. (1996) to our case. As the proofs are very similar, we
only provide an abbreviated proof here. Denote counting processes N1i(t;�)= �̃i(�)I{X̃ i(�)≤ t}
and N2i(t;�2)=�2i I{Ỹ i(�2) ≤ t}, where �= (�′

1, �′
2)′. The predictable compensators for

dN1i(t;�
0
1, �0

2) and dN2i(t;�
0
2) are I{X̃ i(�

0
1, �0

2)≥ t}g1(t) dt and I{Ỹ i(�
0
2)≥ t}g2(t) dt, where

g1(t)= lim
�t→0

Pr(t ≤ T̃ 1(�0
1, �0

2) < t +�t |T̃ 1(�0
1, �0

2)≥ t, H�0
1,�0

2
(T̃ 2(�0

2))≥ t)/�t, (A.1)
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and

g2(t)= lim
�t→0

Pr(t ≤ T̃ 2(�0
2) < t +�t |T̃ 2(�0

2)≥ t)/�t, (A.2)

which can be considered as the hazard functions of the transformed variables. Notice that
gj(t)(j =1, 2) do not depend on the covariate value of Z. The resulting martingales of N1i(t;�

0)
and N2i(t;�

0
2) become

M1i(t)=N1i(t;�
0
1, �0

2)−
∫ t

−∞
I{X̃ i(�

0
1, �0

2)≥u}g1(u) du (A.3)

and

M2i(t)=N2i(t;�
0
2)−

∫ t

−∞
I{Ỹ i(�

0
2)≥u}g2(u) du (A.4)

respectively, both of which are of mean zero.
In terms of the above counting processes, the proposed estimating functions can be

re-expressed as

U1(�)=n−1/2
n∑

i =1

∫ ∞

−∞
{Zi − Z̄

(1)
(u;�)}dN1i(u;�),

U2(�2)=n−1/2
n∑

i =1

∫ ∞

−∞
{Zi − Z̄

(2)
(u;�2)}dN2i(u;�2),

where

Z̄(1)(u;�)=
∑n

j =1 I{X̃ j(�)≥u}Zj∑n
j =1 I{X̃ j(�)≥u} , Z̄(2)(u;�2)=

∑n
j =1 I{Ỹ j(�2)≥u}Zj∑n

j =1 I{Ỹ j(�2)≥u} .

By the martingale central limit theorem,

U1(�0)=n−1/2
n∑

i =1

∫ ∞

−∞
{Zi − z̄ (1)(u)}dM1i(u)+op(1)

and

U2(�0
2)=n−1/2

n∑
i =1

∫ ∞

−∞
{Zi − z̄ (2)(u)}dM2i(u)+op(1)

converge to a multivariate mean zero normal distribution, where z̄1(u) and z̄2(u) are the
limits of Z̄

(1)
(u;�0) and Z̄

(2)
(u;�0

2), respectively, as n→∞. That is, the vector U(�0)={U1(�0)′,
U2(�0

2)′}′ asymptotically has a multivariate normal distribution with zero mean, and its
covariance matrix can be estimated consistently by

V̂ = 1
n

n∑
i =1

Wi(�̂)Wi(�̂)′,

where

W1i(�̂)=
∫ ∞

−∞
{Zi − Z̄(1)(u; �̂)}dM̂1i(u)

= �̃i(�̂)

{
Zi −

∑n
j =1 I (X̃ j(�̂)≥ X̃ i(�̂))Zj∑n

j =1 I (X̃ j(�̂)≥ X̃ i(�̂))

}

−
n∑

l =1

�̃l (�̂)I (X̃ i(�̂)≥ X̃ l (�̂))∑n
j =1 I (X̃ j(�̂)≥ X̃ l (�̂))

{
Zi −

∑n
j =1 I (X̃ j(�̂)≥ X̃ l (�̂))Zj∑n

j =1 I (X̃ j(�̂)≥ X̃ l (�̂))

}
, (A.5)
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W2i(�̂2)=
∫ ∞

−∞
{Zi − Z̄(2)(u; �̂2)}dM̂2i(u)

=�2i

{
Zi −

∑n
j =1 I (Ỹ j(�̂2)≥ Ỹ i(�̂2))Zj∑n

j =1 I (Ỹ j(�̂2)≥Ỹ i(�̂2))

}

−
n∑

l =1

�2l I (Ỹ i(�̂2)≥Ỹ l (�̂2))∑n
j =1 I (Ỹ j(�̂2)≥ Ỹ l (�̂2))

{
Zi −

∑n
j =1 I (Ỹ j(�̂2)≥ Ỹ l (�̂2))Zj∑n

j =1 I (Ỹ j(�̂2)≥ Ỹ l (�̂2))

}
, (A.6)

and Wi(�̂)=(W1i(�̂)′, W2i(�̂2)′)′.
In a small neighbourhood of �0, we have

U(�)=U(�0)+�n1/2(�−�0)+op(1), (A.7)

where � is a (2K ) × (2K ) matrix of constants. It follows that n1/2(�̂ − �0) is asymptotically
normal with zero mean and covariance matrix �−1V�−1.

Then the same arguments as those in Lin et al. (1996) ensures that the re-sampled estima-
tor �∗ has the same asymptotical distribution as �. Moreover, U(t1, t2; �̂) and Û(t1, t2) have
the same asymptotical distribution. Hence, the confidence intervals and the model checking
procedure described in sections 2.2 and 3 are valid.

Appendix 2: proof of theorem 1

From the proof in appendix 1, it suffices to prove that U1(�) − Ũ1(�)=op(1) and U2(�2) −
Ũ2(�2)=op(1). Here, we only show U1(�)−Ũ1(�)=op(1) as the second claim U2(�2)−Ũ2(�2)=
op(1) is simpler and can be proved in a similar way.

Let Ẏ i(�)= Ĥ�1, �2 (ĥ2(Yi) − �′
2Zi), Ẋ i(�)={h1(Xi) − �′

1Zi} ∧ Ẏ i(�)= T̃ 1i(�1) ∧ Ẏ i(�) and
�̇i = I (T̃ 1i(�1) ≤ Ẏ i(�)) denote the plug-in versions of variables Ỹ i , X̃ i and �̃i by replacing
estimator Ŝ2(t) for S2(t) in them. Then we can write Ũ1(�) as

1
n

n∑
i =1

�̇i

{
Zi −

∑n
j =1 I (Ẋ j(�)≥ Ẋ i(�))Zj∑n

j =1 I (Ẋ j(�)≥ Ẋ i(�))

}
= 1

n

n∑
i =1

�̇i{Zi − Ż(Ẋ i(�))}

where

Ż(t)=
∑n

j =1 I (Ẋ j(�)≥ t)Zj∑n
j =1 I (Ẋ j(�)≥ t)

.

Correspondingly, we rewrite U1(�) as

1
n

n∑
i =1

�̃i

{
Zi −

∑n
j =1 I (X̃ j(�)≥ X̃ i(�))Zj∑n

j =1 I (X̃ j(�)≥ X̃ i(�))

}
= 1

n

n∑
i =1

�̃i{Zi − Z̃(X̃ i(�))}

where

Z̃(t)=
∑n

j =1 I (X̃ j(�)≥ t)Zj∑n
j =1 I (X̃ j(�)≥ t)

.
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Because the covariates are bounded, |Zi |≤M <∞ for i =1, . . . , n. Hence,

|U1(�)− Ũ1(�)|=
∣∣∣1
n

n∑
i =1

�̃i{Zi − Z̃(X̃ i(�))}− 1
n

n∑
i =1

�̇i{Zi − Ż(Ẋ i(�))}
∣∣∣

≤
∣∣∣1
n

∑
i:�̃i �= �̇i

[�̃i{Zi − Z̃(X̃ i(�))}− �̇i{Zi − Ż(Ẋ i(�))}]
∣∣∣

+
∣∣∣1
n

∑
i:�̃i = �̇i

[�̃i{Zi − Z̃(X̃ i(�))}− �̇i{Zi − Ż(Ẋ i(�))}]
∣∣∣

≤ 1
n

∑
i:�̃i �= �̇i

2M + 1
n

∑
i:�̃i = �̇i

�̃i |Z̃(X̃ i(�))− Ż(Ẋ i(�))|

≤ 2M
n

n∑
i =1

|�̃i − �̇i |+ 1
n

n∑
i =1

�̃i |Z̃(X̃ i(�))− Ż(X̃ i(�))|. (A.8)

The Ẋ i was replaced by X̃ i in the second term of the last inequality because, when
�̃i =�̇i =1, X̃ i(�)= T̃ 1i(�1)=h1(T1, i)−�′

1Zi = Ẋ i(�).
The quantity

1
n

n∑
i =1

|�̃i − �̇i |

denotes the proportion of observations that are artificially censored differently under Ẏ i(�)
and Ỹ i(�). As

�̇i = I (T̃ 1i(�1)≤ inf
z∈�

[h1(Ŝ
−1
2 (S̃2(ĥ2(T2, i ∧Ci)−�′

2Zi +�2z)))−�′
1z])

= I (sup
z∈�

{T̃ 1i(�1)+�′
1z −h1[Ŝ−1

2 ◦ S̃2(S̃−1
2 ◦ Ŝ2(T2, i ∧Ci)−�′

2(Zi − z))]}≤0)

= I (sup
z∈�

{h−1
1 [T̃ 1i(�1)+�′

1z]− Ŝ−1
2 ◦ S̃2[S̃−1

2 ◦ Ŝ2(T2, i ∧Ci)−�′
2(Zi − z)]}≤0)

= I (sup
z∈�

{S̃−1
2 ◦ Ŝ2 ◦h−1

1 [T̃ 1i(�1)+�′
1z]− S̃−1

2 ◦ Ŝ2(T2, i ∧Ci)+�′
2(Zi − z)}≤0)

and

�̃i = I (sup
z∈�

{S̃−1
2 ◦S2 ◦h−1

1 [T̃ 1i(�1)+�′
1z]− S̃−1

2 ◦S2(T2, i ∧Ci)+�′
2(Zi − z)}≤0),

Ŝ2 converges to S2 uniformly, the first term in (A.8), namely

2M
n

n∑
i =1

|�̃i − �̇i |,

does converge to zero.
For the second term in (A.8), we can re-express it as the sum of

1
n

∑
X̃ i (�)≤t

�̃i |Z̃(X̃ i(�))− Ż(X̃ i(�))| and
1
n

∑
X̃ i (�) > t

�̃i |Z̃(X̃ i(�))− Ż(X̃ i(�))|

for any given fixed time t. As, for any t, we have uniform convergence on the interval [0, t]
of Z̃(u) and Ż(u) to the same limiting process z̄(1)(u) in appendix 1,

1
n

∑
X̃ i (�)≤t

�̃i |Z̃(X̃ i(�))− Ż(X̃ i(�))|→0
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in probability. The remainder

1
n

∑
X̃ i (�) > t

�̃i |Z̃(X̃ i(�))− Ż(X̃ i(�))|≤ 2M
n

#(X̃ i(�) > t)→2M Pr(X̃ i(�) > t).

So, the last expression in (A.8) does not exceed 3M Pr(X̃ i(�) > t) for large n in probability.
As Pr(X̃ i(�) > t) goes to zero as t increases, the last expression in (A.8) converges to zero in
probability.

Therefore, U1(�) − Ũ1(�)=op(1) and the derivations in appendix 1 still work with S2(t)
being replaced by its estimator Ŝ2(t) in all related terms.
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