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1 Multivariate Archimedean copula models

A d-dimensional random vector (X1, . . . ,Xd) belongs to the family of multivariate
Archimedean (AC) copula models if its joint distribution H can be written as

H(x1, . . . , xd) = Cψ,d

(
F1(x1), . . . ,Fd(xd)

)
,

where Fi(xi) = Pr(Xi ≤ xi), i = 1, . . . , d ,

Cψ,d(u1, . . . , ud) = ψ
{
ψ−1(u1) + · · · + ψ−1(ud)

}
(1)

for all u1, . . . , ud ∈ (0,1) and ψ−1 is the inverse of ψ which satisfies the conditions
that ψ(0) = 1, ψ(x) → 0 as x → ∞ and ψ is d-monotone. McNeil and Nešlehová
(2009) derived useful properties for multivariate AC models. One important result is
the following stochastic representation

(X1, . . . ,Xd) =d Rψ,d × (S1, . . . , Sd), (2)

where the radial variable Rψ,d > 0 is independent of (S1, . . . , Sd) which is uniformly
distributed on the standard simplex {(s1, . . . , sd) ∈ [0,1]d : s1 + · · · + sd = 1}. Since
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(S1, . . . , Sd) is distribution-free, all the information about ψ is contained in the radial
distribution. The correspondence between ψ and Rψ,d is characterized by the so-
called Williamson d-transform:

ψ(x) =
∫ ∞

x

(
1 − x

r

)d−1

dGψ,d(r) (x ≥ 0), (3)

where Gψ,d(r) = Pr(Rψ,d ≤ r). The representation in (2) provides a simple way to
generate random samples from a multivariate AC model given that the form of ψ or
Gψ,d(·) is specified.

For practical applications, the interest usually comes from the other direction.
Based on observed data (Xj1, . . . ,Xjd), j = 1, . . . , n, a random sample from
(X1, . . . ,Xd), what is the underlying generator function? The paper by Genest,
Nešlehová and Ziegel serves this purpose. Specifically they aim to establish the
result that the Kendall distribution Kψ,d(·), which is the distribution function of
W = H(X1, . . . ,Xd), uniquely determines ψ , up to a scaling factor. Although a for-
mal proof for d ≥ 4 is still not available, strong evidence has been provided for the
generality to any dimension. As a result, nonparametric estimation of Kψ,d(·) plays
the crucial role of identifying the functional form of ψ(·) or Gψ,d(·) based on (3).

2 Nonparametric estimation of Kendall’s process

Modifying the idea of Genest and Rivest (1993) for the bivariate case, Genest, Nešle-
hová and Ziegel propose to estimate Kψ,d(·) based on pseudo-observations of W ,
namely W1, . . . ,Wn, where Wj = ∑

k I (Xk1 ≤ Xj1, . . . ,Xkd ≤ Xjd)/(n + 1). The
corresponding empirical distribution of Kψ,d(·) is given by

Kn,d(w) = 1

n

n∑

j=1

I (Wj ≤ w). (4)

Note that the condition Kn,d(w−) > w is essential for deriving the estimator of
Gψ,d(·) through the equation Kψ,d(w) = Pr(ψ(Rψ,d) ≤ w).

Consider the following two representations of Kψ,d(·):

Kψ,d(w) =
∫ 1

0
· · ·

∫ 1

0
I
(
Cψ,d(u1, . . . , ud) ≤ w

)
Cψ,d(du1, . . . , dud) (5a)

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
I
(
H(x1, . . . , xd) ≤ w

)
H(dx1, . . . , dxd). (5b)

Accordingly Kψ,d(·) can also be estimated by plugging in a nonparametric estima-
tor of Cψ,d in (5a) or a nonparametric estimator of H in (5b). Based on the data
(Xj1, . . . ,Xjd) (j = 1, . . . , n), the empirical copula is given by

C̃n(u1, . . . , ud) = 1

n

n∑

j=1

1
(
Ûj1 ≤ u1, . . . , Ûjd ≤ ud

)
,
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where Ûji = ∑n
k=1 1(Xki ≤ Xji)/(n + 1) (j = 1, . . . , n), is the pseudo-observation

of Ui = Fi(Xi) for i = 1, . . . , d and, and the empirical estimator of H is given by

Ĥ (x1, . . . , xd) = 1

n

n∑

i=1

I (Xi1 ≤ x1, . . . ,Xid ≤ xd).

Thus Kψ,d(·) can also be estimated by the following two estimators:

K̃d(w) =
∫ 1

0
· · ·

∫ 1

0
I
(
C̃n(u1, . . . , ud) ≤ w

)
C̃n(du1, . . . , dud)

and

K̂d(w) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
I
(
Ĥ (x1, . . . , xd) ≤ w

)
Ĥ (dx1, . . . , dxd). (6)

In comparison with Kn,d(w) in (4), K̃d(w) and K̂d(w) involve numerical integrations
and hence provide no obvious advantage. However Wang and Wells (2000) utilized
a modified version of (6) for the inference of bivariate AC models based on right
censored data in which pseudo-observations W1, . . . ,Wn or Uij for i = 1, . . . , n and
j = 1, . . . , d are not available but nonparametric estimators of H exist. In light of
Proposition 1 and Algorithm 1 of Genest, Nešlehová and Ziegel, one may still derive
the estimator of Gψ,d(·) from K̂d(·) if a d-dimensional nonparametric estimator of
H for right censored data is available. The paper by Dabrowska (1988) described
how to extend their bivariate product-limit estimator to higher dimensions. Simpler
estimators may be obtained under special censoring structures.

For d = 2, the nonparametric estimator of Kψ,d(·) can be used to estimate ψ(·)
based their one-to-one relationships (up to a multiplicative scaling factor). It follows
that

ψ−1(t) = exp

{∫ t

t0

dw

w − Kψ,2(w)

}
, (7)

where t0 ∈ (0,1) is an arbitrary constant. Due to the lack of explicit formulas for
d > 2, it is harder to derive the estimator of ψ(·) directly from the nonparametric
estimator of Kψ,d(·). On the other hand, it is easier to estimate ψ(·) from Gψ,d(·)
using the Williamson d-transform in (3) for any dimension. Hence, the problem is
how to retrieve the nonparametric estimator of Gψ,d(·) from Kn,d(·). This problem is
effectively solved by Proposition 1 and Algorithm 1 of Genest, Nešlehová and Ziegel,
in which they utilize the key property Kn,d(w−) > w. However, generalization of the
algorithm for right censored data is not trivial since the condition K̂d(w−) > w may
not hold for finite samples.

3 Procedures of goodness-of-fit

Practitioners often prefer using a parametric model of ψθ(·), where θ is an unknown
parameter, rather than estimating it nonparametrically. In this case, it becomes cru-
cial to justify the goodness-of-fit for the imposed ψθ(·) function based on the data
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at hand. The paper by Genest et al. (2009) reviews the ideas of different tests and
provides a power study for the bivariate case (d = 2). Conjecture 1 implies that the
Kendall’s distribution Kψ,d(·) contains all the information for verifying the underly-
ing copula function for any dimension d . That is, Cψ1,d �= Cψ2,d implies Kψ1 �= Kψ2

for generator functions ψ1 and ψ2. Hence, one may use

Sn =
∫ 1

0

{
Kn,d(w) − K

θ̂,d
(w)

}2
dw

or

Tn = sup
0<w<1

∥∥Kn,d(w) − K
θ̂,d

(w)
∥∥

as the goodness-of-fit statistics, where Kθ,d(·) is the model-based Kendall’s distribu-
tion corresponding to ψθ(·), and θ̂ is an estimator of θ . Note that the presence of θ̂

affects the distributional properties of the test statistics.
Note that Proposition 4.4 of McNeil and Nešlehová (2009) highlights two other

ways of testing the goodness-of-fit. The first one utilizes the result that, under the
correct form of ψ,

∑d
j=1 ψ−1(Uj ) is independent of the random vector

(
ψ−1(U1)

∑d
j=1 ψ−1(Uj )

, . . . ,
ψ−1(Ud)

∑d
j=1 ψ−1(Uj )

)
.

The other is based on the fact that (1 − ∑d
j=1 ψ−1(Uj ))

d−1 follows a standard uni-
form distribution for all j = 1, . . . , d . These two tests, despite of their simplicity, may
suffer from the identifiability issue. For example, (1 − ∑d

j=1 ψ−1(Uj ))
d−1 may be a

standard uniform distribution even under the incorrect form of ψ . The test based on
Kn,d(w), which is a unique characterization of a copula, do not suffer the identifia-
bility issue under Conjecture 1.

4 Concluding remarks

Genest, Nešlehová and Ziegel develop useful inference methods for the multivariate
Archimedean family which have the potential of being applied to general dimen-
sions. Furthermore a clever algorithm, stated in “Algorithm 1”, is proposed to im-
plement the rank-based inference procedure. Here we mention possible extension to
right censored data. The proposed method, or other extended work, strongly rely on
“Conjecture 1”, which states that the copula function is uniquely determined by the
Kendall’s distribution for any dimension. A formal proof is important for justifying
the generality of these methods.
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