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a b s t r a c t

Truncation occurs when the variable of interest can be observed only if its value satisfies
certain selection criteria. Most existing methods for analyzing such data critically rely
on the assumption that the truncation variable is quasi-independent of the variable of
interest. In this article, the authors propose a likelihood-based inference approach under
the assumption that the dependence structure of the two variables follows a general form
of copulamodel. They develop amodel selectionmethod for choosing the best-fitted copula
among a broad class of model alternatives, and they derive large-sample properties of the
proposed estimators, including the inverse Fisher information matrix. The treatment of
ties is also discussed. They apply their methods to the analysis of a transfusion-related
AIDS data set and compare the results with existing methods. Simulation results are also
provided to evaluate the finite-sample performances of all the competing methods.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Consider the situation where a pair of failure times (X, Y ) is observed only if X ≤ Y . The variable X is said to be right-
truncated by Y , while the variable Y is left-truncated by X . For the example of transfusion-related AIDS studied in [12], let
T be the calendar time of infection, X be the duration of incubation, and τ be the end of the study in calendar time. An AIDS
case can be ascertained only if T + X ≤ τ . The incubation time X is of major interest, but it is right-truncated by Y = τ − T .
An example of left-truncation is the data on age at death in the Channing House Retirement Centre described on pp. 16–17
of [11]. In these data, the age at death Y is left-truncated by the entry age X .

Most methods for analyzing truncation data, including the Lynden–Bell estimator [14] for the distribution/survival
function of X , rely on the assumption of quasi-independence between X and Y [17]. To verify the quasi-independence
assumption, several statistical tests have been developed in [3,5,15,17]. Interestingly, these tests show that the length
of incubation is dependent on the calendar time of infection in the aforementioned AIDS example. To further assess the
dependence relationship, [13] proposed the semi-survival copula model defined, for all x ≤ y, by

Pr(X ≤ x, Y > y | X ≤ Y ) =
Cθ {FX (x), SY (y)}

c(θ, FX , SY )
, (1)

where Cθ : [0, 1]2 → [0, 1] is a copula, i.e., a bivariate distribution function with uniform margins [8], and

c(θ, FX , SY ) =


x≤y

C (1,1)θ {FX (x), SY (y−)}dFX (x){−dSY (y)}
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is a normalizing constant defined in terms of C (1,1)θ (u, v) = ∂2Cθ (u, v)/∂u∂v. Note that quasi-independence corresponds
to the case where, for all u, v ∈ [0, 1], Cθ (u, v) = Π(u, v) ≡ uv. The model is semiparametric in that the forms of
the distribution function FX and survival function SY are unspecified while the form of Cθ is specified up to an unknown
parameter θ ∈ Rp.

In general, FX and SY may not be the true marginal distribution and survival functions of X and Y , respectively, due to the
problem of non-identifiability in the unobservable region for X > Y . For instance, if X ∼ E(1), Y ∼ U(0, 1) and X ⊥ Y ,
then (1) holds for Cθ = Π , FX (x) = (1 − e−x)/(1 − e−1) and SY (y) = 1 − y for 0 ≤ x ≤ y < 1. Hence, FX is the distribution
of X in the observable range 0 ≤ x < 1 while SY coincides with the true survival function of Y .

If Pr(X ≤ x, Y > y) = Cθ {FX (x), SY (y)} holds for all values in {(x, y) : 0 ≤ x, y < ∞}, then FX and SY represent the true
marginal distribution and survival function of X and Y , respectively. Also, the parameter θ coincides, up to a change in sign,
with Kendall’s tau for (X, Y ), viz.

τ(θ) = 1 − 4
 1

0

 1

0
Cθ (u, v)dCθ (u, v).

Semiparametric inference based on a sub-class of model (1) has been considered by [1,6,13]. Specifically, these authors
assumed that for all x ≤ y, the following semi-survival Archimedean copula model holds:

Pr(X ≤ x, Y > y | X ≤ Y ) =
φ−1
θ [φθ {FX (x)} + φθ {SY (y)}]

c(θ, FX , SY )
, (2)

where φθ : [0, 1] → [0,∞] is the generating function satisfying φθ (1) = 0, φ′

θ (t) = ∂φθ (t)/∂t < 0, φ′′

θ (t) =

∂2φθ (t)/∂t2 > 0 for all t ∈ (0, 1) and θ ∈ R. These papers exploitedmoment properties based on (2) to construct estimating
equations.

In this paper, we propose a likelihood-based inference approach based onmodel (1), which includesmore copula choices
than the one-parameter Archimedean copula family. We also develop amodel selectionmethod for choosing the best-fitted
copula among a broad class of model alternatives. The rest of the article is organized as follows. The proposed methodology
is presented in Section 2 and large-sample analysis is described in Section 3. Modifications for ties are provided in Section 4.
In Section 5, we apply all the competingmethods to reanalyze the AIDS data and, in Section 6, we present simulation results.
A conclusion and a discussion may be found in Section 7. Technical arguments are relegated to a series of Appendices.

2. Proposed methodology

2.1. Likelihood construction

The proposedmethodologywas originallymotivated in [2,20], where likelihood structures were developed for analyzing
transformation models under different data settings. However, to adapt to the nature of truncation, special treatment is
needed. Specifically, define HX = − ln(FX ) as the reverse-time cumulative hazard function [12], which is a right-continuous
decreasing function with HX (∞) = 0 and HX (0) = ∞. Define ΛY = − ln(SY ) as the cumulative hazard function, which is
a right-continuous increasing function withΛY (0) = 0 andΛY (∞) = ∞. Accordingly, model (1) can be re-expressed, for
all x ≤ y, as

Pr(X ≤ x, Y > y | X ≤ Y ) =
Cθ {e−HX (x), e−ΛY (y)}

c(θ,HX ,ΛY )
, (3)

where

c(θ,HX ,ΛY ) =


x≤y
η{HX (x),ΛY (y−)}{−dHX (x)}dΛY (y),

and ηθ (x, y) = e−xe−yC (1,1)θ (e−x, e−y). Under model (3), the density function is given, for all x ≤ y, by

ηθ {HX (x),ΛY (y−)}{−dHX (x)}dΛY (y)
c(θ,HX ,ΛY )

. (4)

Let (X1, Y1), . . . , (Xn, Yn) be independent and identical replicates under model (3); assume that for all j ∈ {1, . . . , n}, the
pair (Xj, Yj) is subject to Xj ≤ Yj. To simplify the illustration, we temporarily assume that the data contain no ties, i.e., the
observed points are all distinct. Wewill treat HX andΛY as right-continuous step functions that jump at their own observed
values with

−dHX (Xj) = HX (Xj−)− HX (Xj), dΛY (Yj) = ΛY (Yj)−ΛY (Yj−).

The log-likelihood is then given by

ℓn(θ,HX ,ΛY ) =

n
j=1


ln ηθ {HX (Xj),ΛY (Yj−)} + ln{dΛY (Yj)} + ln{−dHX (Xj)} − ln{c(θ,HX ,ΛY )}


, (5)
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where

c(θ,HX ,ΛY ) =

n
i=1


j:Yj≥Xi

ηθ {HX (Xi),ΛY (Yj−)}dΛY (Yj)

 {−dHX (Xi)}

is an integration over a trapezoid
T = {(x, y) : x ≤ y, X(1) ≤ x ≤ X(n), Y(1) ≤ y ≤ Y(n)},

and where X(j) and Y(j) are the jth smallest value of X and Y , respectively. We propose to maximize ℓn(θ,HX ,ΛY ) under the
additional constraints

−dHX (X(1)) = 1, dΛY (Y(n)) = 1.

These constraints are necessary for the NPMLE, denoted as (θ̂ , ĤX , Λ̂Y ), to be uniquely determined. Otherwise, there exist
infinitely many solutions for (ĤX , Λ̂Y ) for a given θ .

The proposed likelihood-based estimator can be applied to copula models outside the one-parameter Archimedean
copula family. These examples include the Plackett, Gaussian, and Student t copulas. Our method can also handle the
situation where the association of (X, Y ) is induced by a common frailty variable [16] such that

Pr(X > x, Y > y) = φ−1
θ [φθ {Pr(X > x)} + φθ {Pr(Y > y)}],

where φ−1
θ is the Laplace transformation of the underlying frailty variable. The truncated distribution (X, Y ) | X ≤ Y does

not verify (2), but still verifies (1) with Cθ (u, v) = v − φ−1
θ {φθ (1 − u)+ φθ (v)} for all u, v ∈ (0, 1).

2.2. Score equations

Differentiating ℓn(θ,HX ,ΛY ) in Eq. (5) with respect to θ , the score equation is given by

0 =

n
j=1


η̇θ

ηθ
{HX (Xj),ΛY (Yj−)} −

ċ
c
(θ,HX ,ΛY )


, (6)

where

ċ(θ,HX ,ΛY ) =

n
i=1


j:Yj≥Xi

η̇θ {HX (Xi),ΛY (Yj−)}dΛY (Yj)

 {−dHX (Xi)}

and η̇θ (x, y) = ∂ηθ (x, y)/∂θ . Similarly, the score equations for −dHX (Xi) and dΛY (Yi) are

−dHX (Xi) =


n

j=1

Ψ
(1,0)
j (Xi; θ,HX ,ΛY )

−1

,

dΛY (Yi) =


n

j=1

Ψ
(0,1)
j (Yi; θ,HX ,ΛY )

−1

, (7)

where Ψ (1,0)
j and Ψ (0,1)

j are explicitly defined in Appendix A. It follows from Eq. (7) that

HX (x) =


∞

x

n
j=1

d{1(Xj ≤ u)}

n
j=1
Ψ
(1,0)
j (u; θ,HX ,ΛY )

,

ΛY (y) =

 y

0

n
j=1

d{1(Yj ≤ u)}

n
j=1
Ψ
(0,1)
j (u; θ,HX ,ΛY )

. (8)

2.3. Numerical algorithms

Note that (7) can be viewed as a self-consistency algorithm. For a fixed value of θ , and under the additional constraints
−dHX (X(1)) = 1 and dΛY (Y(n)) = 1, one can update the left-hand sides with current estimates and solve the equations
repeatedly until the convergence criterion is reached. The resulting estimators for HX and ΛY are then plugged into (6) to
solve for θ . The procedures for estimating (−dHX , dΛY ) and θ will iterate until the convergence criterion is reached.
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Alternatively, one can numerically maximize (5) by adopting a Newton-type algorithm that involves calculating the
(2n − 2 + p)-dimensional vector of score and a (2n − 2 + p) × (2n − 2 + p) Hessian matrix in each iteration, where
p is the dimension of θ . If p = 1, the starting values may be set as θ ≈ 1 with limθ→1 Cθ = Π,−dHX (Xj) = 1/R(Xj) and
dΛY (Yj) = 1/R(Yj), where R(u) =


1(Xj ≤ u ≤ Yj). Note that Eqs. (6)–(7) can still be used to set the convergence criteria.

The Newton-type algorithm requires less programming effort than the first proposal because it can be implemented using
R routine nlm in which the score vector and Hessian matrix are internally evaluated. The maximization of (−dHX , dΛY ) ∈

[0,∞)2n−2 may be done with the log-transformed parameter (ln(−dHX ), ln(dΛY )) ∈ R2n−2 in the unrestricted parameter
space. This method is adopted to obtain the numerical results of Sections 5 and 6.

Our numerical studies confirm that any initial choice −dHX (X(1)) = p and dΛY (Y(n)) = q for 0 < p, q ≤ 1 leads to a
unique NPMLE, but the results depend on (p, q). The choice p = q = 1 seems to be a natural one since the resulting NPMLE is
reduced to the Nelson–Aalen type estimates−dHX (x) = 1/R(x) and dΛY (y) = 1/R(y) at x = X(1) and y = Y(n), respectively.

2.4. Copula model selection

We discuss how to choose the best-fitting copula based on the data at hand among several model candidates. First,
consider θ ∈ R. Let C (0) = Π be the independence copula and C (k)θ for k = 1, . . . , K be K different copula candidates such
that, for all k ∈ {1, . . . , K}, C (k)θ → Π as θ → 1. We are interested in choosing the best-fitted one among the copulas. For
each k ∈ {1, . . . , K}, we calculate the deviance measure

2{ℓn(θ̂ , ĤX , Λ̂Y )− ℓn(1, Ĥθ=1
X , Λ̂θ=1

Y )},

where Ĥθ=1
X and Λ̂θ=1

Y are the NPMLE under C (0). In other words, what we formulate is a quasi-independence test for
H0 : θ = 1. Without giving a formal proof, we conjecture that under C (0) the deviance measure follows the chi-square
distribution with one degree of freedom. This conjecture can then be applied to compute a p-value based on the observed
deviance statistic. If θ ∈ Rp, we conjecture that the deviance follows the chi-square distribution with p degree of freedom.
To choose the best copula, we first exclude those copulas with p-values larger than the selected significance level (say, 0.05).
We then choose the copula that yields the smallest p-value. If all copulas have p-values greater than the significance level,
then we choose the independence copula.

3. Asymptotic analysis

In this section, we state our main asymptotic results. Detailed proofs are given in Appendix B. We denote the true
parameters by (θ0,H0

X ,Λ
0
Y ) and assume that (θ0,H0

X ,Λ
0
Y ) ∈ Θ , where Θ is the parameter space for (θ,HX ,ΛY ). Let E(·)

denote expectation with respect to a measure corresponding to the true density in (4), i.e.,

dP0(x, y) =
ηθ0{H

0
X (x),Λ

0
Y (y−)}{−dH0

X (x)}dΛ
0
Y (y)

c(θ0,H0
X ,Λ

0
Y )

.

Although the basic framework of the asymptotic analysis is similar to that in [20], the technical details of our work are quite
different. The following conditions are assumed.

Assumption I. For all θ, Cθ is twice differentiable on (0, 1)2 and

0 < inf
u,v∈[0,1]

C (1,1)θ (u, v) ≤ sup
u,v∈[0,1]

C (1,1)θ (u, v) < ∞.

Assumption II. There exists ε > 0 such that ε ≤ c(θ,HX ,ΛY ) for all (θ,HX ,ΛY ) ∈ Θ .

Assumption III. If (θ,HX ,ΛY ) ≠ (θ0,H0
X ,Λ

0
Y ), then

E


ln


ηθ {HX (X),ΛY (Y−)}

c(θ,HX ,ΛY )
hX (X)λY (Y )


< E


ln


ηθ0{H

0
X (X),Λ

0
Y (Y−)}

c(θ0,H0
X ,Λ

0
Y )

h0
X (X)λ

0
Y (Y )


.

Assumption IV. The information operator Ẇ : Θ → Rp
× {ℓ∞(Q )}2 defined in Appendix B.2 is continuously invertible.

Assumption I excludes the possibility that the NPMLE diverges to infinity, say, −dĤX (Xj) = ∞ or dΛ̂Y (Yj) = ∞. The
Frank and Plackett copulas satisfy this condition while the Clayton and Gumbel copulas do not. If the latter happens, one
canmodify C (1,1)θ to be bounded. From our experience, modification by setting C (1,1)θ (u∧0.99, v∧0.99) can work quite well
when implementing Newton-type algorithms.Wewill adopt such amodification in the data analysis presented in Section 5.
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Assumption II is required for the density function in (4) to be well defined. Clearly, c(θ0,H0
X ,Λ

0
Y ) ≥ ε > 0; otherwise

nothing is observed. Therefore, the condition can be satisfied by defining the parameter space in the neighborhood of
(θ0,H0

X ,Λ
0
Y ).

Assumption III states that the true parameter should be a well-separated point of maximum in terms of the
Kullback–Leibler divergence, which is usually imposed for the consistency of M-estimators; see [18, p. 62]. It follows from
Jensen’s inequality for a function − ln(x) that, for any (θ,HX ,ΛY ) ∈ Θ ,

E


ln


ηθ {HX (X),ΛY (Y−)}

c(θ,HX ,ΛY )
hX (X)λY (Y )


≤ E


ln


ηθ0{H

0
X (X),Λ

0
Y (Y−)}

c(θ0,H0
X ,Λ

0
Y )

h0
X (X)λ

0
Y (Y )


.

Assumption III also requires that the equality holds if and only if (θ,HX ,ΛY ) = (θ0,H0
X ,Λ

0
Y ). We examine Assumption III

numerically in the Supplemental document.
Assumption IV stipulates the non-singularity of the information operator Ẇ : Θ → Rp

×{ℓ∞(Q )}2. Since it is difficult to
find the inverse of a function that takes a value in a functional space, a convenient alternative is to check the non-singularity
of the observed Fisher information matrix, which will be defined in Section 3.2. In the numerical studies of Sections 5 and
6, we have confirmed that the observed Fisher information matrix is always non-singular and thus invertible.

3.1. Consistency

Under Assumptions I, II and III, it is shown in Appendix B.1 that θ̂ → θ0, ĤX → H0
X , and Λ̂Y → Λ0

Y almost surely. Here
we provide some intuitive explanations for that result. First, note that, if (H0

X ,Λ
0
Y ) are known, the model is parametric with

dependent truncation [4]. Then, the strong consistency θ̂ → θ0 is intuited from the parametric likelihood theory. Next, we
assume that θ0 is known. We show in Appendix A that

E{Ψ
(1,0)
j (s; θ0,H0

X ,Λ
0
Y )} =

e−H0
X (s)C (1,0)

θ0
{e−H0

X (s), e−Λ0
Y (s−)}

c(θ0,H0
X ,Λ

0
Y )

,

E{Ψ
(0,1)
j (s; θ0,H0

X ,Λ
0
Y )} =

e−Λ0
Y (s−)C (0,1)

θ0
{e−H0

X (s), e−Λ0
Y (s−)}

c(θ0,H0
X ,Λ

0
Y )

.

By the Glivenko–Cantelli theorem, the right-hand side of (8) evaluated at (θ0,H0
X ,Λ

0
Y ) converges almost surely to the limit

of

H̃X (x) =
c(θ0,H0

X ,Λ
0
Y )

n

n
j=1


∞

x

d{1(Xi ≤ u)}

e−H0
X (u)C (1,0)

θ0
{e−H0

X (u), e−Λ0
Y (u−)}

, (9a)

Λ̃Y (y) =
c(θ0,H0

X ,Λ
0
Y )

n

n
j=1

 y

0

d{1(Yj ≤ u)}

e−Λ0
Y (u−)C (0,1)

θ0
{e−H0

X (u), e−Λ0
Y (u−)}

. (9b)

Here, H̃X and Λ̃Y are the sum of independent and identically distributed terms with E{H̃X (x)} = H0
X (x) and E{Λ̃Y (y)} =

Λ0
Y (y). Again, by applying the Glivenko–Cantelli theorem to (9a) and (9b), we obtain H̃X → H0

X and Λ̃Y → Λ0
Y almost

surely.

3.2. Asymptotic normality

We study the asymptotic distribution of the random variable

n1/2


b⊤(θ̂ − θ0)+


∞

0
wX (u){−dĤX (u)+ dH0

X (u)} +


∞

0
wY (u){dΛ̂Y (u)− dΛ0

Y (u)}


, (10)

where b ∈ Rp andwX andwY are bounded functions. Define

in(θ̂ , ĤX , Λ̂Y ) = în =


în,11 î⊤n,12
în,12 în,22


,

where în,11 : p × p, în,12 : (2n − 2) × p, and în,22 : (2n − 2) × (2n − 2) are the observed Fisher information matrix which
equals the negative of the Hessian matrix of ℓn(θ,HX ,ΛY ) with respect to θ,−dHX (X(j)) for j ∈ {2, . . . , n}, and dΛY (Y(j))
for j ∈ {1, . . . , n − 1} evaluated at (θ̂ , ĤX , Λ̂Y ).
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Under Assumptions I, II, III and IV, it is shown in Appendix B.2 that the variable defined in (10) converges weakly to a
zero mean Gaussian distribution whose asymptotic variance can be estimated by

(b⊤,W⊤

X ,W
⊤

Y )(în/n)
−1(b⊤,W⊤

X ,W
⊤

Y )
⊤, (11)

whereW⊤

X = (wX (X(2)), . . . , wX (X(n))) andW⊤

Y = (wY (Y(1)), . . . , wY (Y(n−1))). Eq. (11) can be used to derive the estimators
for the marginal asymptotic variances of (θ̂ , ĤX , Λ̂Y ), respectively. For example, when p = 1, the asymptotic variance of θ̂
is obtained by settingwX (u) = 0, wY (u) = 0 and b = 1, which has the form

V̂ (θ̂) = (în,11 − î⊤n,12 î
−1
n,22 în,12)

−1.

For the purpose of constructing confidence intervals, one may use the log-transformed intervals to improve the normal
approximation. For example, when θ ∈ (0,∞), the 95% confidence interval for θ is

(θ̂ exp{−1.96 V̂ (θ̂)1/2/θ̂}, θ̂ exp{1.96 V̂ (θ̂)1/2/θ̂}).

Also, the variance estimator of Λ̂Y (y), denoted by V̂ {Λ̂Y (y)}, is obtained by setting wX (u) = 0, wY (u) = 1(u ≤ y) and
b = 0. By the Delta Method, the variance estimator for ŜY (y) = e−Λ̂Y (y) is V̂ {ŜY (y)} = ŜY (y)

2
V̂ {Λ̂Y (y)}, which is useful for

constructing the confidence interval.

4. Modifications for ties

In the previous discussions, we assumed for convenience that the data contain no ties. Nowwe discuss how to handle tied
data, which are commonly seen in practical applications. It is worth noting that the methods of [6,13] critically rely on the
assumption of no ties; furthermore, the extensions required to handle ties do not seem trivial. The latter paper suggested a
tie breaking procedure by adding small noise to the original data. Although the effect of suchmodification should bemodest,
it creates unnecessary jumps in the estimated marginal functions; see Section 5 for an example. For additional discussion of
the detrimental effects of data jittering in copula modeling contexts, see [8,9].

Modification of the proposed likelihood method for ties is straightforward and also more natural. Specifically let X∗

(1) <

· · · < X∗

(nX )
and Y ∗

(1) < · · · < Y ∗

(nY )
be distinct observed values of X and Y , respectively. Then, the likelihood function can

still be written as (5), but the definition of c(θ,HX ,ΛY ) is modified to become

c(θ,HX ,ΛY ) =

nX
i=1

 
j:Y∗
(j)≥X∗

(i)

ηθ {HX (X∗

(i)),ΛY (Y ∗

(j)−)}dΛY (Y ∗

(j))


{−dHX (X∗

(i))}.

The NPMLE is obtained by maximizing (5) under the constraints −dHX (X∗

(1)) = 1 and dΛY (Y ∗

(nY )
) = 1. For numerical

maximization, we recommend choosing the following starting values:

−dHX (X∗

(i)) =

n
k=1

1(Xk = X∗

(i))/R(X
∗

(i)),

dΛY (Y ∗

(j)) =

n
k=1

1(Yk = Y ∗

(j))/R(Y
∗

(j)).

In Section 5, we will apply this modification in analysis of the AIDS data which contains many tied observations.

5. Data analysis

The proposed method is applied to the transfusion-related AIDS data available in [10]. Let T be the infection time
and X be the incubation time from infection to AIDS. Since the total study period was 102 months, any individuals with
T +X ≤ 102 could be included in the sample. The incubation time X is right-truncated by Y = 102−T . The sample consists
of (X1, Y1), . . . , (X293, Y293), subject to Xj ≤ Yj for all j ∈ {1, . . . , 293}. Of major interest in the study is the estimation of the
marginal distribution of X as well as the association between T and X .

Table 1 lists the results for fitting 12 copulas (2 semi-survival Archimedean copula models, 8 non-semi-survival
Archimedean copula models and 2 two-parameter copula models). The deviances of the 12 copulas all yield p-values less
than 0.05; hence, we exclude the independence copula. By applying the proposed model selection procedure, the semi-
survival Clayton copula provides the best fit among all the competitors as it yields the smallest p-value. Note that the
same model was also selected by the method of [1]. However, their choice is based on comparing only three semi-survival
Archimedean copula models which do not include the independence copula. Our model selection based on a larger pool of
copula choices strengthens the evidence that the semi-survival Clayton copula is indeed suitable for the AIDS data.

Assuming the semi-survival Clayton copula, we compared the proposed NPMLE with the twomoment-based estimation
methods. The estimates, and the corresponding estimated standard errors in parentheses, are 0.763 (0.033) for the NPMLE,
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Table 1
Analysis of the transfusion-related AIDS data.

Cθ (u, v) Forma θ̂ (SE) Kendall’s τ on (X, Y ) 95% CI for θ Deviance (p-value)b

Clayton Semi-survival 0.763 (0.033) 0.134 (0.701, 0.831) 19.028 (0.000)
Regular 1.521 (0.172) 0.207 (1.218, 1.898) 8.568 (0.003)
Survival 1.645 (0.233) 0.244 (1.246, 2.171) 5.228 (0.022)

Frank Semi-survival 55.72 (42.66) 0.390 (12.43, 249.90) 10.828 (0.001)
Plackett Semi-survival 0.189 (0.050) 0.356 (0.113, 0.316) 8.068 (0.005)
Normal Semi-survival −0.516 (0.083) 0.345 (−0.678,−0.353) 14.341 (0.000)
t(df=10) Semi-survival −0.520 (0.076) 0.350 (−0.669,−0.371) 9.559 (0.002)
t(df=5) Semi-survival −0.507 (0.073) 0.344 (−0.650,−0.363) 3.959 (0.047)
Gumbel Regular 1.459 (0.136) 0.315 (1.257, 1.821) 7.868 (0.005)

Survival 1.340 (0.120) 0.254 (1.170, 1.678) 6.368 (0.012)
Two-parameter Regular θ̂ :1.521 (0.400) 0.207 θ :(1.116, 3.348) 8.588 (0.003)

β̂:1.000c

Survival θ̂ :1.344 (0.264) 0.309 θ :(1.076, 2.551) 7.928 (0.019)
β̂:1.235 (0.140) β:(1.073, 1.756)

a A copula Cθ is used to model the distribution of (X, Y ) in three different forms: (i) Semi-survival form: Pr(X ≤ x, Y > y|X ≤

Y ) = Cθ {e−HX (x), e−ΛY (y)}/c . (ii) Regular form: Pr(X ≤ x, Y > y|X ≤ Y ) = [e−HX (x) − Cθ {e−HX (x), 1 − e−ΛY (y)}]/c. (iii) Survival form:
Pr(X ≤ x, Y > y|X ≤ Y ) = [e−ΛY (y) − Cθ {1 − e−HX (x), e−ΛY (y)}]/c. For Frank, Plackett, Gaussian and t-copulas, the three forms lead to the
same deviance and Kendall’s tau. Hence, only the results for the semi-survival form are reported. For Gumbel and two-parameter copulas,
the semi-survival form allows only negative association on (X, Y ) and is not suitable for this data. Hence, the results for regular and survival
forms are reported.

b The p-value is the probability that the chi-squared distribution with one or two (for the two-parameter family) degrees of freedom
exceeds the observed deviance.

c Maximum of the likelihood function is attained at the parameter boundary β = 1, and hence the standard error based on the observed
Fisher information is not available.

Fig. 1. The estimated cumulative distribution functions of the incubation time of AIDS.

0.816 (0.046) for the method of [6], and 0.823 (0.055) for the method of [13]. The corresponding estimates of Kendall’s tau
are 0.134 (NPMLE), 0.101 (method [6]) and 0.097 (method [13]). Note that the standard error of theNPMLE uses the observed
Fisher information matrix while that of the two competitors use the jackknife method.

All the results showweak negative association between T and X . Fig. 1 displays the estimated distribution functions of X
obtained by the threemethods. These results imply that, as long as the same copula is fitted, themarginal estimation roughly
produces the same result. As mentioned earlier, the marginal estimator by the NPMLE method jumps at observed values.
However, the tie-breaking approach adopted by the two competing methods creates unnecessary jumps in the estimated
distribution curves of X (see Fig. 1).

We further study the impact of the copula misspecification on the NPMLE under the Plackett copula. The resulting
estimated distribution curve of X is somewhat different from the three curves computed under the Clayton copula
(Fig. 1).
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Table 2
Finite-sample performances of the proposed estimator under the Plackett copula.

Parameter Mean (Bias) SE SEE 95% cov

Spearman’s ρ = 0.25 (θ = 1/2.15, Pr(X ≤ Y ) = 0.79)

ln(θ) = −0.765 n = 125 −0.778 (−0.013) 0.407 0.407 0.945
n = 250 −0.697 (0.068) 0.311 0.296 0.965

HX (x) = 0.693 n = 125 0.736 (0.043) 0.123 0.121 0.955
n = 250 0.733 (0.040) 0.090 0.086 0.970

ΛY (y) = 0.693 n = 125 0.710 (0.017) 0.144 0.139 0.960
n = 250 0.725 (0.032) 0.104 0.102 0.970

Spearman’s ρ = 0.5 (θ = 1/5.11, Pr(X ≤ Y ) = 0.84)

ln(θ) = −1.631 n = 125 −1.642 (−0.011) 0.323 0.319 0.965
n = 250 −1.652 (−0.021) 0.231 0.222 0.940

HX (x) = 0.693 n = 125 0.726 (0.033) 0.101 0.092 0.910
n = 250 0.716 (0.023) 0.067 0.064 0.920

ΛY (y) = 0.693 n = 125 0.704 (0.011) 0.110 0.102 0.960
n = 250 0.701 (0.008) 0.068 0.069 0.950

Spearman’s ρ = −0.25 (θ = 2.15, Pr(X ≤ Y ) = 0.72)

ln(θ) = 0.765 n = 125 0.859 (0.094) 0.598 0.554 0.960
n = 250 0.717 (−0.048) 0.342 0.359 0.930

HX (x) = 0.693 n = 125 0.809 (0.116) 0.313 0.244 0.960
n = 250 0.717 (0.024) 0.139 0.138 0.935

ΛY (y) = 0.693 n = 125 0.793 (0.100) 0.363 0.267 0.960
n = 250 0.699 (0.006) 0.139 0.137 0.930

Spearman’s ρ = −0.5 (θ = 5.11, Pr(X ≤ Y ) = 0.70)

ln(θ) = 1.631 n = 125 1.758 (0.127) 0.818 0.598 0.915
n = 250 1.708 (0.077) 0.534 0.386 0.955

HX (x) = 0.693 n = 125 0.883 (0.190) 0.582 0.343 0.925
n = 250 0.787 (0.094) 0.374 0.196 0.960

ΛY (y) = 0.693 n = 125 0.862 (0.169) 0.624 0.354 0.885
n = 250 0.775 (0.082) 0.404 0.207 0.955

Simulation mean, bias (in parenthesis), standard error (SE), average standard error estimate (SEE) and
coverage rates of 95% confidence interval based on 200 runs are reported. The functions HX (x) and ΛY (y)
are evaluated at x = 0.462 and y = 1.386, respectively, such that e−HX (x) = e−ΛY (y) = 0.5.

6. Simulation studies

6.1. Performances under Plackett copula

Here, we evaluate the finite-sample performance of the proposed NPMLE and the variance estimator. We consider the
Plackett copula,

Cθ (u, v) =
1

2(θ − 1)
+

u + v

2
−

[{1 + (θ − 1)(u + v)}2 − 4uvθ(θ − 1)]1/2

2(θ − 1)
,

which does not belong to the Archimedean copula family, so that themethods of [6,13] cannot be applied. In the simulations,
the marginal functions follow exponential distributions with

HX (x) = − ln(1 − e−λX x), ΛY (y) = λYy.

The values of θ are chosen as 1/2.51, 1/5.11, 2.51 and 5.11, which correspond to Spearman’s rho taking values 0.25, 0.50,
−0.25,−0.50, respectively, for the pre-truncated pair of (X, Y ). Note that Kendall’s tau for this model does not have a closed
form. Also θ > 1 corresponds to a negative association and 0 < θ < 1 corresponds to a positive association. Then, truncation
data (X1, Y1), . . . , (Xn, Yn), subject to Xj ≤ Yj, are generated and the NPMLE is computed over 200 simulation runs.

Table 2 presents the results for estimating θ,HX (x) and ΛY (y) under λX = 1.5 and λY = 0.5. In general, the NPMLE
provides accurate estimates of the true parameters. The standard errors decrease as the sample size increases from n = 125
to 250 and are close to the average of the estimated standard errors. Also the coverage rates of the confidence intervals are
close to the nominal 95% level in most cases. The bias of the NPMLE tends to inflate when data exhibit stronger negative
association.

Fig. 2 summarizes the results for estimating FX (x) = e−HX (x) at FX (x) = 0.2, 0.3, . . . , 0.8 under λX = 1.5 and λY = 0.5.
The results show that the estimator generally performs well. The average upper and lower limits in the 95% confidence
intervals agree with the 2.5% and 97.5% quantiles of F̂X (x), respectively. Accordingly, the coverage rates of the confidence
interval are close to the nominal 95% in all configurations. However, both the bias and standard deviation of the estimator
F̂X (x) = exp{−ĤX (x)} gets large as x → ∞. This is due to the lack of information in the upper tail of FX where a large value of
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Fig. 2. The performance of the estimator F̂X (x) based on 200 simulation runs under the Plackett copulamodel. The solid line (—) draws the true distribution
function FX (x) = 1−e−1.5x and the dotted line (·····) draws the average of F̂X (x). The shaded regions are defined by the 2.5th and 97.5th empirical quantiles
of F̂X (x) and the dashed lines (– – – –) are the average of 95% confidence intervals. The numbers near the upper confidence limit is the percentage of the
confidence intervals that cover the true value FX (x).

Table 3
Comparison of the deviance statistic with the chi-squared distribution with one degree of freedom under
the Plackett copula.

(λX , λY ) n Pr{Deviance > χ2
df=1(1 − p)} E (Deviance)

p = 0.05 p = 0.10 p = 0.20 p = 0.50

(1.5, 0.5) 75 0.065 0.115 0.225 0.495 1.167
125 0.070 0.095 0.215 0.540 1.178

(1.5, 1.0) 75 0.060 0.140 0.285 0.585 1.267
125 0.075 0.140 0.230 0.530 1.105

(1.0, 1.0) 75 0.050 0.100 0.185 0.485 0.993
125 0.055 0.100 0.185 0.480 0.974

Each cell contains the empirical probability Pr{Deviance > χ2
df=1(1−p)}, whereDeviance= 2{ℓn(θ̂ , ĤX , Λ̂Y )

− ℓn(1, Ĥθ=1
X , Λ̂θ=1

Y )}, and the empirical average E (Deviance) is based on 200 runs.

X is likely to be right-truncated by Y . A similar phenomenon can be found in the Kaplan–Meier estimator for right censored
data.

Table 3 summarizes the sampling distribution of the proposed deviance between the independence copula and the
Plackett copula. We generated data under the null model (independence copula) with three configurations: (λX , λY ) =

(1.5, 0.5), (1.5, 1.0), and (1.0, 1.0). It is seen that the empirical probabilities that the deviance exceeds the upper 5% points
of the chi-square distribution are between 5% and 7.5%. Also, the averages of the deviance statistics vary between 0.974 and
1.267. Our conjecture that the deviance is approximated by the chi-squared distribution with one degree of freedom seems
to be supported by the simulation results.

6.2. Performances under Frank copula

We compare the three competing methods under the semi-survival Frank Archimedean copula model using the
parameterization from [7]. That is

Cθ (u, v) = logθ {1 + (θu − 1)(θv − 1)/(θ − 1)}.

Note that θ > 1 corresponds to a positive association between X and Y and θ ∈ (0, 1) corresponds to a negative association.
The values of ln(θ) are set to be 2.380, 5.746, −2.380, and −5.746, which correspond to Kendall’s tau 0.25, 0.5, −0.25, and
−0.5, respectively. The same marginal functions are chosen as in Section 6.1 with λX = 1.5 and λY = 0.5.

Table 4 summarizes the results.When Kendall’s tau are 0.25, 0.5, and−0.25, the threemethods produce almost unbiased
results. On the other hand,whenKendall’s tau is−0.5, theNPMLE remains roughly unbiasedbut the two competitors become
biased. Since these two methods sometimes fail to produce a proper solution due to numerical reasons, we propose some
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Table 4
Finite-sample performances of three estimators under the Frank copula.

Parameter n NPMLE Emura et al. Chaieb et al.

Kendall’s τ = 0.25

ln(θ) = 2.38 125 −0.0362 (0.9537) −0.0999 (0.9306) −0.0995 (0.9317)
250 −0.0206 (0.6150) −0.0454 (0.6065) −0.0451 (0.6072)

FX (x) = 0.50 125 −0.0172 (0.0497) −0.0145 (0.0503) −0.0145 (0.0504)
250 −0.0076 (0.0346) −0.0056 (0.0353) −0.0056 (0.0354)

SY (y) = 0.50 125 −0.0062 (0.0689) −0.0072 (0.0689) −0.0071 (0.0689)
250 0.0013 (0.0426) 0.0011 (0.0427) 0.0011 (0.0427)

Kendall’s τ = 0.5

ln(θ) = 5.746 125 0.1604 (1.2739) −0.1829 (0.9508) −0.1834 (0.9539)
250 −0.0122 (0.6737) −0.1078 (0.6524) −0.1085 (0.6529)

FX (x) = 0.50 125 −0.0051 (0.0519) −0.0081 (0.0432) −0.0081 (0.0432)
250 −0.0049 (0.0301) −0.0031 (0.0327) −0.0032 (0.0328)

SY (y) = 0.50 125 −0.0068 (0.0558) −0.0031 (0.0433) −0.0031 (0.0432)
250 0.0004 (0.0290) −0.0009 (0.0305) −0.0009 (0.0305)

Kendall’s τ = −0.25

ln(θ) = −2.38 125 −0.1216 (1.1843) 0.5180 (1.0491) 0.5521 (0.9709)
250 −0.2479 (1.0537) 0.1347 (0.9781) 0.1322 (0.9888)

FX (x) = 0.50 125 −0.0202 (0.0952) 0.0586 (0.1129) 0.0613 (0.1113)
250 −0.0246 (0.0855) 0.0203 (0.0945) 0.0203 (0.0944)

SY (y) = 0.50 125 −0.0095 (0.1127) 0.0671 (0.1150) 0.0698 (0.1132)
250 −0.0189 (0.0949) 0.0253 (0.0967) 0.0253 (0.0967)

Kendall’s τ = −0.5

ln(θ) = −5.746 125 0.6197 (0.9742) 2.2066 (2.1359) 2.2502 (2.0987)
250 0.3769 (0.9005) 1.9234 (2.1022) 1.9265 (2.0973)

FX (x) = 0.50 125 0.0369 (0.0882) 0.1855 (0.1766) 0.1885 (0.1752)
250 0.0242 (0.0741) 0.1644 (0.1726) 0.1646 (0.1724)

SY (y) = 0.50 125 0.0480 (0.0905) 0.1936 (0.1745) 0.1966 (0.1729)
250 0.0292 (0.0757) 0.1670 (0.1698) 0.1673 (0.1696)

Each cell contains the average bias and standard error (in parenthesis) based on 200 runs. The functions FX (x)
and SY (y) are evaluated at x = 0.462 and y = 1.386, respectively, such that FX (x) = SY (y) = 0.5.

modification to handle this problem, which is described in Appendix C. As long as the estimating equations yield proper
solutions, the three competing estimators have similar performances.

We have seen that the performance of F̂X and ŜX with negative Kendall’s tau is poorer than that with positive Kendall’s
tau (see Fig. 2 and Table 4). To explain this phenomenon,we compare two scatter plots for (X1, Y1), . . . , (X125, Y125) between
positive and negative Kendall’s tau in Fig. 3. Note that, under truncation, the available data are on a trapezoid

T = {(x, y); x ≤ y, X(1) ≤ x ≤ X(n), Y(1) ≤ y ≤ Y(n)},

which corresponds to the shaded region in Fig. 3. It is shown that, under negative Kendall’s tau, the trapezoid did not cover
the upper tail of X and lower tail of Y . Hence, the truncation leads to some loss of information in these tails, which carries
over the overall performance of F̂X and ŜY .

7. Conclusion and discussion

In this article, we proposed a likelihood-based inference procedure to analyze dependent truncation data. In comparison
with the twomoment-based estimating functions proposed by [6,13], the NPMLEmethod can fit more copula models and is
naturally suitable for tied data. Under strongly negative dependent truncation, the NPMLEmay be amore reliable alternative
to the two competing approaches that sometimes fail to produce a proper solution. Furthermore, we obtain an analytic
variance formula based on the inverse of the observed Fisher informationmatrixwithout relying on re-sampling techniques.

The proposed model selection procedure is appealing because many models can be included in the selection pool.
Simulation results show that the proposed test statistic, as a deviance measure between the independence model and
the imposed copula model, approximately follows the chi-squared distribution with one degree of freedom. However, a
formal proof establishing the asymptotic null distribution of the deviance statistics is stillmissing. Another strategy tomodel
selection is based on the information theoretic criteria such as Akaike information criterion (AIC) or Bayesian information
criterion (BIC). The proposed methods are implemented in the R depend.truncation package available at http://cran.r-
project.org/.

The proposed NPMLE have some drawbacks, too. The extension of the method to incorporate right censoring appears
to be challenging. On the other hand, the moment-based methods of [6,13] have straightforward extensions. Hence none
of the three estimators dominate the others. The choice of methods depends on the data at hand. For example, the two

http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/
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Fig. 3. Scatter plots for simulated data {(Xj, Yj) : j = 1, . . . , 125} under the Frank copula model with positive association (Kendall’s tau = 0.5, left panel)
and negative association (Kendall’s tau = −0.5, right panel). A trapezoidal region T = {(x, y) : x ≤ y, X(1) ≤ x ≤ X(n), Y(1) ≤ y ≤ Y(n)} (shaded region)
describes how data provide information for estimating themarginal functions FX and SY . The ranges [0, 3.53] for x-axis and [0, 10.60] for y-axis are chosen
such that FX (3.53) = 0.995 and 1 − SY (10.60) = 0.995, respectively.

moment-based methods for estimating θ under the semi-survival Clayton model are computationally appealing since they
can be performedwithout estimating themarginal functions [6,13]. Section 4.2 of [6] also provides a simple explicit formula
for the standard error.
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Appendix A. Derivation of the score functions

The derivatives of ℓn(θ,HX ,ΛY ) in (5) with respect to −dHX (Xi) and dΛY (Yi) are

n
j=1

1(Xj < Xi)ψ
(1,0)
θ {HX (Xj),ΛY (Yj−)} +

1
−dHX (Xi)

−
n

c(θ,HX ,ΛY )

∂c(θ,HX ,ΛY )

∂{−dHX (Xi)}
,

n
j=1

1(Yj > Yi)ψ
(0,1)
θ {HX (Xj),ΛY (Yj−)} +

1
dΛY (Yi)

−
n

c(θ, HX ,ΛY )

∂c(θ, HX ,ΛY )

∂dΛY (Yi)
,

where ψ (1,0)
θ (x, y) = ∂ ln ηθ (x, y)/∂x, ψ

(0,1)
θ (x, y) = ∂ ln ηθ (x, y)/∂y,

∂c(θ, HX ,ΛY )

∂{−dHX (Xi)}
=


j:Xj<Xi

 
ℓ:Yℓ≥Xj

η
(1,0)
θ {HX (Xj),ΛY (Yℓ−)}dΛY (Yℓ)

 {−dHX (Xj)}

+


ℓ:Yℓ≥Xi

ηθ {HX (Xi),ΛY (Yℓ−)}dΛY (Yℓ)

=

 Xi−

0


∞

u−
η
(1,0)
θ {HX (u),ΛY (v−)}dΛY (v){−dHX (u)}

+


∞

Xi−
ηθ {HX (Xi),ΛY (v−)}dΛY (v),



182 T. Emura, W. Wang / Journal of Multivariate Analysis 110 (2012) 171–188

and

∂c(θ, HX ,ΛY )

∂dΛY (Yi)
=


j:Yj>Yi

 
ℓ:Xℓ≤Yj

η
(0,1)
θ {HX (Xℓ),ΛY (Yj−)}{−dHX (Xℓ)}

 dΛY (Yj)

+


ℓ:Xℓ≤Yi

ηθ {HX (Xℓ),ΛY (Yi−)}{−dHX (Xℓ)}

=


∞

Yi+

 ν

0
η
(0,1)
θ {HX (u),ΛY (v−)}{−dHX (u)}dΛY (v)

+

 Yi

0
ηθ {HX (u),ΛY (Yi−)}{−dHX (u)},

where η(1,0)θ (x, y) = ∂ηθ (x, y)/∂x and η
(0,1)
θ (x, y) = ∂ηθ (x, y)/∂y.

Using these formulas, the score equations become

1/{−dHX (Xi)} =

n
j=1

Ψ
(1,0)
j (Xi; θ, HX ,ΛY ),

1/{dΛY (Yi)} =

n
j=1

Ψ
(0,1)
j (Yi; θ,HX ,ΛY ),

where

Ψ
(1,0)
j (s; θ, HX ,ΛY ) = c(θ, HX ,ΛY )

−1
 s−

0


∞

u−
η
(1,0)
θ {HX (u),ΛY (v−)}dΛY (v){−dHX (u)}

+ c(θ, HX ,ΛY )
−1


∞

s−
ηθ {HX (s),ΛY (v−)}dΛY (v)

− 1(Xj < s)ψ (1,0)
θ {HX (Xj),ΛY (Yj−)},

and

Ψ
(0,1)
j (s; θ, HX ,ΛY ) = c(θ, HX ,ΛY )

−1


∞

s+

 ν

0
η
(0,1)
θ {HX (u),ΛY (v−)}{−dHX (u)}dΛY (v)

+ c(θ, HX ,ΛY )
−1
 s

0
ηθ {HX (u),ΛY (s−)}{−dHX (u)}

− 1(Yj > s)ψ (0,1)
θ {HX (Xj),ΛY (Yj−)}.

Now we derive the expectation of Ψ (1,0)
j and Ψ (0,1)

j under the true parameters. Observe that

E[1(Xj < s)ψ (1,0)
θ0

{H0
X (Xj),Λ

0
Y (Yj−)}] =

1
c(θ0,H0

X ,Λ
0
Y )

 s−

0


∞

u−
η
(1,0)
θ0

{H0
X (u),Λ

0
Y (v−)}dΛ

0
Y (v){−dH0

X (u)},

and

E[1(Yj > s)ψ (0,1)
θ0

{H0
X (Xj),Λ

0
Y (Yj−)}] =

1
c(θ0,H0

X ,Λ
0
Y )


∞

s+

 ν

0
η
(0,1)
θ0

{H0
X (u),Λ

0
Y (v−)}{−dH0

X (u)}dΛ
0
Y (v).

Hence,

E{Ψ
(1,0)
j (s; θ0,H0

X ,Λ
0
Y )} =


∞

s− ηθ0{H
0
X (s),Λ

0
Y (v−)}{dΛ

0
Y (v)}

c(θ0,H0
X ,Λ

0
Y )

=
e−H0

X (s)C (1,0)
θ0

{e−H0
X (s), e−Λ0

Y (s−)}

c(θ0,H0
X ,Λ

0
Y )

,

and

E{Ψ
(0,1)
j (s; θ0,H0

X ,Λ
0
Y )} =

 s
0 ηθ0{H

0
X (u),Λ

0
Y (s−)}{−dH0

X (u)}

c(θ0,H0
X ,Λ

0
Y )

=
e−Λ0

Y (s−)C (0,1)
θ0

{e−H0
X (s), e−Λ0

Y (s−)}

c(θ0,H0
X ,Λ

0
Y )

.
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Appendix B. Details of the asymptotic results

B.1. Proof of consistency

We aim to show that θ̂ → θ0, ĤX (x) → H0
X (x), and Λ̂Y (y) → Λ0

Y (y) almost surely as n → ∞. The proof consists of the
following three steps.

Step 1: We show that −dĤX (Xj) < ∞, Λ̂Y (Yj) < ∞ for all j ∈ {1, . . . , n}. By definition, −dĤX (X(1)) = 1 < ∞. Suppose
that −dĤX (X(i)) = ∞ and that 0 < −dĤX (Xj) < ∞ for j ≠ i and 0 < −dΛ̂X (Xj) < ∞ for all j. Then, the (i − 1)th
contribution to the log-likelihood is

ℓj=(i−1)(θ,HX ,ΛY ) = ln C (1,1)θ {0, e−ΛY (Y(i−1)−)} −ΛY (Y(i−1)−)+ ln dΛY (Y(i−1))− HX (X(i−1))− ln{c(θ,HX ,ΛY )}

≤ ln(M)−ΛY (Y(i−1)−)+ ln{dΛY (Y(i−1))} + ln{e−HX (X(i−1))/c(θ,HX ,ΛY )},

for someM > 0. From ĤX (X(i−1)) → ∞ and Assumption II, one has

e−dĤX (X(i−1))/c(θ, ĤX , Λ̂Y ) → 0.

This implies ℓj=(i−1)(θ̂ , ĤX , Λ̂Y ) ≤ −∞. Therefore, −dĤX (Xj) = ∞ cannot be the NPMLE. Thus −dĤX (X(i)) < ∞ for all
i ∈ {1, . . . , n}. In the same way, one has 0 < dΛ̂Y (Yj) < ∞ for all j ∈ {1, . . . , n}.

Step 2: We show that there exist some convergent subsequences of ĤX (x), Λ̂Y (y) and θ̂ such that ĤX (x) →

H∗

X (x), Λ̂Y (y) → Λ∗

Y (y) and θ̂ → θ∗ almost surely, where H∗

X (x) andΛ
∗

Y (y) are absolutely continuous and differentiable.

For any bounded sequencesH
(n)
X (x),Λ

(n)
Y (y) and θ

(n)
, it can be shown that ℓn(θ

(n)
,H

(n)
X ,Λ

(n)
Y )/n is stochastically bounded.

It follows that

ℓn(θ̂ , ĤX , Λ̂Y )/n ≥ Op(1). (B.1)

If ĤX (x) → ∞ for some subsequence, then for some constantM > 0,

1
n
ℓn(θ̂ , ĤX , Λ̂Y ) =

1
n


j

ln


C (1,1)θ {e−ĤX (Xj), e−Λ̂Y (Yj−)}e−ĤX (Xj)e−Λ̂Y (Yj−)dΛ̂Y (Yj){−dĤX (Xj)}

c(θ̂ , ĤX , Λ̂Y )



≤
1
n


j

ln


Me−Λ̂Y (Yj−)dΛ̂Y (Yj)

ε

ĤX (Xj)

eĤX (Xj)


→ −∞.

This contradicts (B.1). Therefore, supn ĤX (x) → ∞ holds almost surely. By Helly’s Selection Theorem, there exists a
subsequence such that ĤX (x) → H∗

X (x) almost surely. The same arguments can be applied to prove Λ̂Y (y) → Λ∗

Y (y) and
θ̂ → θ∗.

Step 3: We show (θ∗,H∗

X ,Λ
∗

Y ) = (θ0,H0
X ,Λ

0
Y ). Let H̃X (x) and Λ̃Y (y) be defined as (9a) and (9b), respectively. By the

Glivenko–Cantelli Theorem, H̃X (x) → HX (x) and Λ̃Y (y) → ΛY (y) almost surely. Clearly,

ℓn(θ̂ , ĤX , Λ̂Y )/n ≥ ℓn(θ, H̃X , Λ̃Y )/n.

By applying the Strong Law of Large Numbers on both sides, we have

E

ln

ηθ {H∗

X (X),Λ
∗

Y (Y−)}

c(θ∗,H∗

X ,Λ
∗

Y )
h∗

X (X)λ
∗

Y (Y )


≥ E

ln

ηθ {H0

X (X),Λ
0
Y (Y−)}

c(θ,H0
X ,Λ

0
Y )

h0
X (X)λ

0
Y (Y )


.

From Assumption III, (θ∗,H∗

X ,Λ
∗

Y ) = (θ0,H0
X ,Λ

0
Y ).

B.2. Proof of asymptotic normality

Let Pn be the empirical measure based on the independent and identically distributed random variables, viz.

dPn(x, y) =
1
n

n
j=1

1(Xj = x, Yj = y).

Denote the log-likelihood function of a single subject by ℓ(θ,HX ,ΛY ). Let also

c0 = c(θ0,H0
X ,Λ

0
Y ), ċ0 = ∂c(θ,H0

X ,Λ
0
Y )/∂θ |θ0 , c̈0 = ∂2c(θ,H0

X ,Λ
0
Y )/∂θ

2
|θ0 .
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Define the derivative functions

ℓ̇(θ,HX ,ΛY ) = ∂ℓ(θ,HX ,ΛY )/∂θ,

ℓHX (θ,HX ,ΛY )[1HX ] = lim
ε→0

{ℓ(θ,HX + ε1HX ,ΛY )− ℓ(θ,HX ,ΛY )}/ε,

ℓ̇HX (θ,HX ,ΛY )[1HX ] = lim
ε→0

{ℓ̇(θ,HX + ε1HX ,ΛY )− ℓ̇(θ,HX ,ΛY )}/ε,

and

ℓHXHX (θ,HX ,ΛY )[∆1HX ,∆2HX ] = lim
ε→0

{ℓHX (θ,HX + ε∆2HX ,ΛY )[∆1HX ] − ℓHX (θ,HX ,ΛY )[∆1HX ]}/ε.

Notations for ℓΛY (θ,HX ,ΛY )[1ΛY ], ℓ̇ΛY (θ,HX ,ΛY )[1ΛY ], ℓΛYΛY (θ , HX ,ΛY )[∆1ΛY ,∆2ΛY ], and ℓHXΛY (θ,HX ,ΛY )[1HX ,
1ΛY ] are defined similarly.

The above derivatives can be used to characterize the NPMLE as a solution to the likelihood equations. First, we define the
derivative ofHX . Suppose that (θ̂ , ĤX , Λ̂Y ) is the NPMLE thatmaximizes ℓn(θ,HX ,ΛY ) in (5). Clearly, for any1HX = 1HX (·),

ℓn(θ̂ , ĤX + ε1ĤX , Λ̂Y ) ≤ ℓn(θ̂ , ĤX , Λ̂Y ).

This implies that ∂ℓn(θ̂ , ĤX + ε1HX , Λ̂Y )/∂ε|ε=0 = 0 in any1HX . Let Q be the set of all bounded functions h : [0,∞) →

[0, 1]. For any pX ∈ Q and qY ∈ Q , define

Wn(θ,HX ,ΛY )[pX , qY ]

= Pn


ℓ̇(θ,HX ,ΛY )

ℓHX (θ,HX ,ΛY )


∞

•

pX (u){−dHX (u)}


ℓΛY (θ,HX ,ΛY )


•

0
qY (u){dΛY (u)}




=
1
n


j



η̇θ

ηθ
{HX (Xj),ΛY (Yj−)} −

ċ
c
(θ,HX ,ΛY )

ψ
(1,0)
θ {HX (Xj),ΛY (Yj−)}


∞

Xj
pX (u){−dHX (u)} + pX (Xj)−

cHX

c
(θ,HX ,ΛY )

ψ
(0,1)
θ {HX (Xj),ΛY (Yj−)}

 Yj

0
qY (u)dΛY (u)+ qY (Yj)−

cΛY

c
(θ,HX ,ΛY )


where

cHX (θ,HX ,ΛY ) =


x≤y


η
(1,0)
θ {HX (x),ΛY (y−)}


∞

x
pX (u){−dHX (u)}

+ ηθ {HX (x),ΛY (y−)}pX (x)


{−dHX (x)}dΛY (y),

cΛY (θ,HX ,ΛY ) =


x≤y


η
(0,1)
θ {HX (x),ΛY (y−)}

 y

0
qY (u)dΛY (u)

+ ηθ {HX (x),ΛY (y−)}qY (y)


{−dHX (x)}dΛY (y).

Replacing Pn by P0 in these expressions, we can defineW (θ,HX ,ΛY )[pX , qY ]. Then, it follows thatW (θ0,H0
X ,Λ

0
Y )[pX , qY ] =

0 ∈ Rp+2 for any (pX , qY ). To see this, consider, e.g., the first p components ofW (θ,HX ,ΛY )[pX , qY ]; they are of the form
x≤y

η̇θ

ηθ
{HX (x),ΛY (y−)}dP0(x, y)−

ċ
c
(θ,HX ,ΛY ),

and vanish at (θ,HX ,ΛY ) = (θ0,H0
X ,Λ

0
Y ). Furthermore, by the definition of the NPMLE,Wn(θ̂ , ĤX , Λ̂Y )[pX , qY ] = 0 ∈ Rp+2

for any (pX , qY ). Nowwe can regardWn(θ,HX ,ΛY ) (andW (θ,HX ,ΛY )) as an element inRp
×{ℓ∞(Q )}2, where the argument

(pX , qY ) is omitted and ℓ∞(Q ) is the set of all uniformly bounded real functions on Q . Consider the following maps:

Wn(θ,HX ,ΛY ) : Θ → Rp
× {ℓ∞(Q )}2, W (θ,HX ,ΛY ) : Θ → Rp

× {ℓ∞(Q )}2.

Then, the NPMLE is regarded as a Z-estimator in Rp
× {ℓ∞(Q )}2; see p. 309 of [19]. By the Central Limit Theorem,

n1/2
{Wn(θ

0,H0
X ,Λ

0
Y ) − W (θ0,H0

X ,Λ
0
Y )} converges weakly to a Gaussian random element Z ∈ Rp

× {ℓ∞(Q )}2, indexed by
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(pX , qY ). To apply Theorem 3.3.1 of [19], W (θ,HX ,ΛY )must be Fréchet-differentiable at (θ0,H0
X ,Λ

0
Y ) with a continuously

invertible derivative. This suffices to find a map, called the information operator, Ẇ : Θ → Rp
×{ℓ∞(Q )}2 so that with the

norm in Rp
× {ℓ∞(Q )}2,

∥W (θ,HX ,ΛY )− W (θ0,H0
X ,Λ

0
Y )− Ẇ (θ − θ0,HX − H0

X ,ΛY −Λ0
Y )∥Rp×{ℓ∞(Q )}2

= o(|θ − θ0| + ∥HX − H0
X∥ + ∥ΛY −Λ0

Y∥).

By analytical calculations, it follows that

Ẇ (θ − θ0,HX − H0
X ,ΛY −Λ0

Y )[pX , qY ] = P0


λ1
λ2
λ3


where

λ1 = ℓ̈(θ − θ0)+ ℓ̇HX [HX − H0
X ] + ℓ̇ΛY [ΛY −Λ0

Y ],

λ2 = ℓ̇HX


∞

•

pX {−dH0
X }


(θ − θ0)+ ℓHXHX


∞

•

pX {−dH0
X },HX − H0

X



+ ℓHXΛY


∞

•

pX {−dH0
X },ΛY −Λ0

Y


,

λ3 = ℓ̇ΛY


•

0
qYdΛ0

Y


(θ − θ0)+ ℓΛYHX


•

0
qYdΛ0

Y ,HX − H0
X



+ ℓΛYΛY


•

0
qYdΛ0

Y ,ΛY −Λ0
Y


.

By Assumption IV, Ẇ : Θ → Rp
× {ℓ∞(Q )}2 is continuously invertible. Therefore, in light of Theorem 3.3.1 in [19], we

have

n1/2Ẇ (θ̂ − θ0, ĤX − H0
X , Λ̂Y −Λ0

Y ) = n1/2Pn



ℓ̇(θ0,H0
X ,Λ

0
Y )

ℓHX (θ
0,H0

X ,Λ
0
Y )


∞

•

pX {−dH0
X }



ℓΛY (θ
0,H0

X ,Λ
0
Y )


•

0
qYdΛ0

Y


+ oP(1). (B.2)

Define two step functions: pX that jumps at observed pointX(j)with pX (X(j)) = p(j) and qY that jumps at observed point Y(j)
with qY (Y(j)) = q(j). Let ∆⃗X be the vector of size n− 1 consisting of the ordered values of p(j){−dĤX (X(j))} for j ∈ {2, . . . , n}.
Further let ∆⃗Y be another vector of size n − 1 consisting of the ordered values of q(j)dΛ̂Y (Y(j)).

Now let H̃0
X and Λ̃0

Y be the step functions that jump at Xj and Yj with H̃0
X (Xj) = H0

X (Xj), Λ̃
0
Y (Yj) = Λ0

Y (Yj), −dH̃0
X (X(1)) = 1

and dΛ̃0
Y (Y(n)) = 1. Then

n1/2


(θ̂ − θ0)⊤,


−d(ĤX − H̃0

X )(X(j))
n
j=2
,

d(Λ̂Y − Λ̃0

Y )(Y(j))
n−1

j=1


in(θ̂ , ĤX , Λ̂Y )

n
(a⊤, ∆⃗⊤

X , ∆⃗
⊤

Y )
⊤.

This expression further equals

−n1/2Pn


(θ̂ − θ0)⊤ ˆ̈ℓa +

ˆ̇ℓHX [ĤX − H̃0
X ]

⊤a +
ˆ̇ℓΛY [Λ̂Y − Λ̃0

Y ]
⊤a

+ (θ̂ − θ0)⊤ ˆ̇ℓHX


∞

•

pX {−dĤX }


+ ℓ̂HXHX


ĤX − H̃0

X ,


∞

•

pX {−dĤX }



+ ℓ̂ΛYHX


Λ̂Y − Λ̃0

Y ,


∞

•

pX {−dĤX }


+ (θ̂ − θ0)⊤ ˆ̇ℓΛY


•

0
qYdΛ̂Y



+ ℓ̂HXΛY


ĤX − H̃0

X ,


•

0
qYdΛ̂Y


+ ℓ̂ΛYΛY


Λ̂Y − Λ̃0

Y ,


•

0
qYdΛ̂Y


,
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which in turn can be rewritten as

−n1/2P0


(θ̂ − θ0)⊤ℓ̈a + ℓ̇HX [ĤX − H0

X ]
⊤a + ℓ̇ΛY [Λ̂Y −Λ0

Y ]
⊤a

+ (θ̂ − θ0)⊤ℓ̇HX


∞

•

pX {−dH0
X }


+ ℓHXHX


ĤX − H0

X ,


∞

•

pX {−dH0
X }



+ ℓΛYHX


Λ̂Y −Λ0

Y ,


∞

•

pX {−dH0
X }


+ (θ̂ − θ0)⊤ℓ̇ΛY


•

0
qYdΛ0

Y



+ ℓHXΛY


ĤX − H0

X ,


•

0
qYdΛ0

Y


+ ℓΛYΛY


Λ̂Y −Λ0

Y ,


•

0
qYdΛ0

Y


+ oP(1)

and finally simplifies to

n1/2(a⊤, 1, 1)Ẇ (θ̂ − θ0, ĤX − H0
X , Λ̂Y −Λ0

Y )+ oP(1),

where ˆ̈ℓ ≡ ℓ̈(θ̂ , ĤX , Λ̂Y ),
ˆ̇ℓHX [·] ≡ ℓ̇HX (θ̂ , ĤX , Λ̂Y )[·] and so on. Together with (B.2),

n1/2


(θ̂ − θ0)⊤,


−d(ĤX − H̃0

X )(X(j))
n
j=2
,

d(Λ̂Y − Λ̃0

Y )(Y(j))
n−1

j=1


in(θ̂ , ĤX , Λ̂Y )

n
(a⊤, ∆⃗⊤

X , ∆⃗
⊤

Y )
⊤

equals

(a⊤, 1, 1)n1/2Pn



ℓ̇(θ0,H0
X ,Λ

0
Y )

ℓHX (θ
0,H0

X ,Λ
0
Y )


∞

•

pX {−dH0
X }



ℓΛY (θ
0,H0

X ,Λ
0
Y )


•

0
qYdΛ0

Y


+ oP(1).

For b ∈ Rp,WX = (wX (X(2)), . . . , wX (X(n)))⊤, and WY = (wY (Y(1)), . . . , wY (Y(n−1)))
⊤, we choose a ∈ Rp, pX , and qY such

that

in(θ̂ , ĤX , Λ̂Y )

n
(a⊤, ∆⃗⊤

X , ∆⃗
⊤

Y )
⊤

= (b⊤,W⊤

X ,W
⊤

Y )
⊤.

Therefore,

n1/2


b⊤(θ̂ − θ0)+


∞

0
wX (u){−dĤX (u)+ dH0

X (u)} +


∞

0
wY (u){dΛ̂Y (u)− dΛ0

Y (u)}


equals

n1/2


b⊤(θ̂ − θ0)+


∞

0
wX (u){−dĤX (u)+ dH̃0

X (u)} +


∞

0
wY (u){dΛ̂Y (u)− dΛ̃0

Y (u)}


+ oP(1).

This expression further equals

n1/2


b⊤(θ̂ − θ0)+

n
j=2

wX (Xj){−dĤX (Xj)+ dH̃0
X (Xj)} +

n−1
j=1

wY (Yj){dΛ̂Y (Yj)− dΛ̃0
Y (Yj)}


+ oP(1)

= n1/2


(θ̂ − θ0)⊤,


−d(ĤX − H̃0

X )(X(j))
n
j=2
,

d(Λ̂Y − Λ̃0

Y )(Y(j))
n−1

j=1


× (b⊤,W⊤

X ,W
⊤

Y )
⊤

+ oP(1)

= (a⊤, 1, 1)n1/2Pn



ℓ̇(θ0,H0
X ,Λ

0
Y )

ℓHX (θ
0,H0

X ,Λ
0
Y )


∞

•

pX {−dH0
X }



ℓΛY (θ
0,H0

X ,Λ
0
Y )


•

0
qYdΛ0

Y


+ oP(1).
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From (B.2), the above random variable converges weakly to a zero mean Gaussian distribution with asymptotic variance

(a⊤, 1, 1)P0



ℓ̇(θ0,H0
X ,Λ

0
Y )

ℓHX (θ
0,H0

X ,Λ
0
Y )


∞

•

pX {−dH0
X }



ℓΛY (θ
0,H0

X ,Λ
0
Y )


•

0
qYdΛ0

Y




⊗2

a
1
1


.

The latter can be expressed as

−P0


a⊤ℓ̈a + aℓ̇HX


∞

•

pX {−dH0
X }


+ aℓ̇ΛY


•

0
qYdΛ0

Y


+ aℓ̇HX


∞

•

pX {−dH0
X }



+ ℓHXHX


∞

•

pX {−dH0
X },


∞

•

pX {−dH0
X }


+ ℓΛYHX


•

0
qYdΛ0

Y ,


∞

•

pX {−dH0
X }



+ aℓ̇ΛY


•

0
qYdΛ0

Y


+ ℓHXΛY


∞

•

pX {−dH0
X },


•

0
qYdΛ0

Y


+ ℓΛYΛY


•

0
qYdΛ0

Y ,


•

0
qYdΛ0

Y


.

This is estimated by
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This expression can also be written as
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Appendix C. Numerical modifications for the two competing estimators

In our simulations, the estimating equations for (θ, c) used in [6,13] sometimes fail to produce a proper solution when
data are generated from the semi-survival Frank model with negative associations. This occurs as the estimating equations
do not have a zero solution for any value of (θ, c). By adopting an idea of [6], the estimating equation for (θ, c) is modified as

Uc(θ, c) =


j: t1<xj


φθ


c
R̃(xj)
n


− φθ


c
R̃(xj)− 1

n


1{R̃(xj) ≥ bna

} + φθ

 c
n


,

where t1 = X(1), and 0 < a < 1 and b > 0 are arbitrary tuning parameters. The tuning parameters can be set as a = 1/10
and b = 1 for usual cases.When the estimating equations do not yield any solution,we set a = 1.5/10 and b = 1. In thisway,
the estimating equations always produce a solution. Before the modification, the percentages lacking a solution are 11.5%
(n = 125) and 6.5% (n = 250) for ln(θ) = −2.38; they are 33.25% (n = 125) and 58.5% (n = 250) for ln(θ) = −5.746.
The modified estimating equation still produces unbiased results when ln(θ) = −2.380, but it is somewhat biased when
ln(θ) = −5.746.

Appendix D. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.jmva.2012.03.012.

http://dx.doi.org/10.1016/j.jmva.2012.03.012


188 T. Emura, W. Wang / Journal of Multivariate Analysis 110 (2012) 171–188

References

[1] D. Beaudoin, L. Lakhal Chaieb, Archimedean copula model selection under dependent truncation, Stat. Med. 27 (2008) 4440–4454.
[2] Y.-H. Chen, Semiparametric marginal regression analysis for dependent competing risks under an assumed copula, J. R. Stat. Soc. Ser. B 72 (2010)

235–251.
[3] C.-H. Chen, W.-Y. Tsai, W.-H. Chao, The product-moment correlation coefficient and linear regression for truncated data, J. Amer. Statist. Assoc. 91

(1996) 1181–1186.
[4] T. Emura, Y. Konno, A goodness-of-fit test for parametric models based on dependently truncated data, Comput. Statist. Data Anal. 56 (2012)

2237–2250.
[5] T. Emura, W. Wang, Testing quasi-independence for truncation data, J. Multivariate Anal. 101 (2010) 223–239.
[6] T. Emura, W. Wang, H.-N. Hung, Semi-parametric inference for copula models for truncated data, Statist. Sinica 21 (2011) 349–367.
[7] C. Genest, Frank’s family of bivariate distributions, Biometrika 74 (1987) 549–555.
[8] C. Genest, J. Nešlehová, A primer on copulas for count data, Astin Bull. 37 (2007) 475–515.
[9] C. Genest, J. Nešlehová, M. Ruppert, Comment on ‘‘Statistical models and methods for dependence in insurance data’’, by S. Haug, C. Klüppelberg,

L. Peng, J. Korean Statist. Soc. 40 (2011) 141–148.
[10] J.D. Kalbfleisch, J.F. Lawless, Inference based on retrospective ascertainment: an analysis of the data on transfusion-related AIDS, J. Amer. Statist. Assoc.

84 (1989) 360–372.
[11] J.P. Klein, M.L. Moeschberger, Survival Analysis: Techniques for Censored and Truncated Data, second ed., Springer, Berlin, 2003.
[12] S.W. Lagakos, L.M. Barraj, V. de Gruttola, Non-parametric analysis of truncated survival data, with application to AIDS, Biometrika 75 (1988) 515–523.
[13] L. Lakhal Chaieb, L.-P. Rivest, B. Abdous, Estimating survival under a dependent truncation, Biometrika 93 (2006) 655–669.
[14] D. Lynden-Bell, A method of allowing for known observational selection in small samples applied to 3RC quasars, Mon. Not. R. Astron. Soc. 155 (1971)

95–118.
[15] E.C. Martin, R.A. Betensky, Testing quasi-independence of failure and truncation via conditional Kendall’s tau, J. Amer. Statist. Assoc. 100 (2005)

484–492.
[16] D. Oakes, Bivariate survival models induced by frailties, J. Amer. Statist. Assoc. 84 (1989) 487–493.
[17] W.-Y. Tsai, Testing the assumption of independence of truncation time and failure time, Biometrika 77 (1990) 169–177.
[18] A.W. van der Vaart, Asymptotic Statistics, Cambridge University Press, Cambridge, 1998.
[19] A.W. van der Vaart, J.A. Wellner, Weak Convergence and Empirical Process, Springer, New York, 1996.
[20] D. Zeng, D.Y. Lin, Efficient estimation of semiparametric transformation models for counting processes, Biometrika 93 (2006) 627–640.


	Nonparametric maximum likelihood estimation for dependent truncation data based on copulas
	Introduction
	Proposed methodology
	Likelihood construction
	Score equations
	Numerical algorithms
	Copula model selection

	Asymptotic analysis
	Consistency
	Asymptotic normality

	Modifications for ties
	Data analysis
	Simulation studies
	Performances under Plackett copula
	Performances under Frank copula

	Conclusion and discussion
	Acknowledgments
	Derivation of the score functions
	Details of the asymptotic results
	Proof of consistency
	Proof of asymptotic normality

	Numerical modifications for the two competing estimators
	Supplementary data
	References


