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SUMMARY

This paper considers nonparametric inference for duration times of two successive
events. Since the second duration process becomes observable only if the first event has
occurred, the length of the first duration affects the probability of the second duration
being censored. Dependent censoring arises if the two duration times are correlated, which
is often the case. Standard approaches to this problem fail because of dependent censoring
mechanism. A new product-limit estimator for the second duration variable and a path-
dependent joint survival function estimator are proposed, both modified for the dependent
censoring. Properties of the estimators are discussed. An example from Lawless (1982) is
studied for illustrative purposes as well as a simulation study.

Some key words: Auxiliary endpoints; Bivariate survival data; Dependent censoring Informative censoring;
Product-limit estimator; Serial failure events.

1. I N T R O D U C T I O N

In the analysis of censored lifetime data it is often assumed that the failure time variables
are independent of the nuisance censoring variables to ensure identifiability of the marginal
survival function. This assumption is usually referred to as 'non-informative censoring'
and has been implicitly used to construct most survival function estimators, such as the
well-known Kaplan & Meier (1958) estimator and estimators of a bivariate survival
function proposed by Campbell & F6ldes (1982), Tsai, Leurgans & Crowley (1986),
Dabrowska (1988), Prentice & Cai (1992), Lin & Ying (1993) and Tsai & Crowley (1988),
for instance.

In this paper we investigate a situation in which the independent censoring assumption
is not plausible. Consider the duration times of two successive events, which occur in a
particular order. Such a sampling scheme is very useful for describing the evolution of a
multistage disease process or a process of recurrent events. For example, it is known that
the development of AIDS evolves from the HIV incubation period to the period of clinical
AIDS. The joint behaviour, especially their association, of the two duration variables is
often of interest. However, censoring can occur to both duration processes as well as to
their sum. The second duration process becomes observable only if the first event has
occurred. The longer the first duration, the greater is the chance that the second duration
time will be censored. If the two duration variables are correlated, the second duration
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562 WEIJING WANG AND MARTIN T. WELLS

time is censored by a dependent variable related to the first duration time. We consider
nonparametric estimation of the joint survival function of the two duration times under this
dependent censoring mechanism.

In the development of the proposed method, the information on the first duration is
used to weight individual observations to 'unbias' the effect of dependent censoring. There
has been recent interest in improved estimation of the survival function using auxiliary
information from disease markers. Papers by Dabrowska (1987), Jewell & Kabfleisch
(1992), Longini et al. (1989), Malani, Redfearn & Nielsen (1992), Robins (1992), Robins
& Rotnizky (1992), Fleming et al. (1994), Gary (1994) and Malani (1995) give results in
this direction. Disease progression can also be described by a multistage compartment
model. Frydman (1995) considers modelling and estimation of these transition prob-
abilities. Strong assumptions such as Markov or semi-Markov structures on transition
probabilities and the duration distributions are imposed.

In § 2 we discuss the characteristics of the dependent censoring mechanism for successive
events and investigate the effect of censoring on inference. In § 3 we propose a path-
dependent estimator of the joint survival function. Alternative estimators are also dis-
cussed. Asymptotic properties of the proposed estimator are discussed in § 4. In § 5 an
example adapted from Lawless (1982, p. 477) is analysed to illustrate the proposed ideas.
Simulation results are presented in § 6. Visser (1996) studied the same problem of depen-
dent censoring but assumed that the duration and censoring variables are discrete; the
proposed method can handle a more general situation.

2. NOTATION AND THE EFFECT OF CENSORING

Let (X, Y) be the duration times of two consecutive and adjacent events with the joint
survival function, let F(x, y) = pr(X > x, Y> y) and let Ft(.) (i = 1, 2) be the marginal sur-
vival functions of X and Y, respectively. Both X and Y are subject to right censoring.
Figure 1 indicates that Cl actually governs the censoring for two univariate processes,
namely X and X + Y. Throughout the paper it is assumed that Cy is independent of both
X and Y. Therefore the marginal and joint survival functions of X, Z = X + Y, and (X, Z)
can be estimated by standard methods by assuming independent censoring. Note that Y
is censored by C2 = {Cl — X)I(X ^ Cx), which is possibly correlated with Y if (X, Y)
are correlated. The observed variables are (X, Y, 5X, 5y), where X = X A Cx, f=YA C2,
5X = I(X ^ C\) and 5y = I(Y^C2). It can be seen that

Case 1, (5,, 5,) = (0, 0) if C1 < X,
Case 2, (5X, dy) = (1, 0) if X ^ C1 < X + Y,
Case 3, (5X, 5y) = (1, 1) if Cx > X + Y.
Denote the observed sample by S— {(Xh %, SXt, 5yi, i = 1,. . . ,«} which consists of n

identically and independently distributed realisations from (X, % dx, 5y). Note that, if

x x+Y
-A 1

Case 1 -

Case2

Case 3

Fig. 1. Censoring conditions for successive duration times.
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Estimation of successive duration times 563

8X( = 0, then Syi = 0 and % = 0, which implies that no information about 7, is available.
Consider a subset of S, denoted by S*, consisting of observations in Case 2 and Case 3.
In S*, SXl = 1 and Yt is subject to censoring by C2i = Cu — x, > 0, where x, is the observed
value of Xt and can be treated as a covariate. We will see that x, affects the probability
of the corresponding Yt being censored. Since F2(y) = F(0, y), we shall discuss the effect
of informative censoring on the estimation of F(x, y).

There exist several methods for estimating F(x, y) nonparametrically. The most common
approach is to estimate F(x, y) via estimable components. The independent censoring
assumption plays a crucial role in making these components identifiable and can simplify
the estimation. For example, consider the following path-dependent decomposition of
F(x,y):

F(x, y) = p r ( * > x, Y> y) = p r (7> y \X > x) pr{X > x)

x), (1)

where AY\x>x(y) is the cumulative conditional hazard of Y given X > x. The marginal
Fi(x) can be estimated by the product limit method based on (Xh 5Xi) ( i = l , . . . , n ) .
Assuming that (X,Y)±(C1,C2), Campbell & Foldes (1982) proposed the following
estimator of AY\x>x(dv):

Note that, as x = 0, (2) reduces to the Nelson-Aalen estimator of AY(dv), where Ay(.) is
the cumulative hazard of Y, and the Campbell-Foldes estimator reduces to the
Kaplan-Meier estimator of F2(y). Let R{v\x) be the risk set of Y at time v given X > x.
If (X, Y)±{C1,C2), each observation in R{v\x) is subject to the same censoring effect
which can be cancelled in calculating A^fx>x(Av). In other words, if censoring is non-
informative, observations are censored regardless of the survival status and hence R(v \ x),
at each x and v, is still homogeneous so A(

Yfx>x(Av) is a reasonable estimate of AY\x>x(dv).
Under the dependent censoring structure described earlier, it is easy to see that

/A A pT{X>x,Yedv,C1>X + v) i"G1{u + v)F(du,dv)
AyJx>x(Av)-

in probability. Hence the Campbell-Foldes estimator of F(x, y) and the corresponding
Kaplan-Meier estimator of F2(y) are not consistent. Similar arguments can be applied to
other bivariate estimators of F(x, y) assuming independent censoring.

3. NONPARAMETRIC ESTIMATION OF F(x, y)

31. The recommended estimator
When X and Y occur consecutively, the path which describes the trajectory of (X, Y)

on the plane can be determined by their relative ordering. Therefore the path-dependent
decomposition discussed earlier is a natural choice for the problem. We now propose a
modified estimate of AY\x>x(dv). Previous analysis indicates that, under the dependent
censoring structure, the risk set R(v\x) for estimating AY\x>x(dv) may not be homogeneous.
Note that, for v > 0, R(v | x) <= S*. An observation i with the first duration observed to be
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564 WEIJING WANG AND MARTIN T. WELLS

x, is included in R{v\x) (v > 0) with probability

pr {i e R{v \ x)} = pr(£, e x,, x, > x, 8Xi = 1, Yi ^ v)

= pr(X e xit Xi>x,Y^v) p r ^ > x, + v), (3)

Where X e x is the abbreviation of X e (x, x + A) as A -+0. Equation (3) implies that x,
affects the probability of the corresponding Yt being included in R(v\x). To adjust the
heterogeneity, one can weight each observation in R(v\x) by an estimate of the reciprocal
of its including probability, namely l/G1(xI + u). Note that, since Cx is censored in-
dependently by X + Y, Gx(.) can be estimated by the Kaplan-Meier estimator based on
(Xt + Yh 1 — dXidXt) (i = 1 , . . . , ri). Hence the proposed estimator of A.Y\x>x(dy) is given by

', > x, 8Xl = 1,Y, = v, 5yt = 1 yG^Xj + v)
-£> . \ ' (4)

where G\(.) is the Kaplan-Meier estimator of Gx(.). If we plug (4) into (1), the proposed
path-dependent estimator is given by

Hx,y)= El {l-Am>x(A»)}/'1(x)> (5)

where F\(x) is the Kaplan-Meier estimator of F t(x). The marginal survival function of Y
can be estimated by F(0, y).

A potential problem with P(x, y) exists if G\(.) = 0. Let X(n) + Y(n) be the observed largest
value of (̂ ?; + y() (i = 1 , . . . , n) and let (5X n, dy n) be the corresponding indicators. When
y^ y(n), one has to compute Ay|^>i;(Ay(n)), which involves calculating l/G1(Xi^+ y(n))
if £ ( B ) >x. When Cx is observed at XW+YM, that is dX{ti)dyin) = O, G1(X'M+YM) = 0.
Note that, in this case, the numerator in (4) becomes

By the convention that 0/0 = 0, we can set Aj.|A->JC(Ay(n)) = 0 when <5*(n)<5,,(n) = 0.

3-2. Alternative estimators
Recall that X and Z = X + Y are both subject to censoring by Cx, independent of both

X and Z. Therefore the joint survival function of {X, Z), denoted by Fxz{x, z) =
pr(X > x, Z > z), can be estimated by standard procedures such as those of Dabrowska
(1988) and Prentice & Cai (1992) or Lin & Ying (1993) and Tsai & Crowley (1998) in
the case of univariate censoring. Let Px,z(- > •) be an estimator of Fx 2 ( . , . ) . It is possible
to estimate F(x, y) by transforming Pxz{.,.). Specifically,

(6)

where

^x,z(Ax, Az) = PXtZ(x, z) - PXtZ{x, z-)- Px,z(x-, z) + Px>z(x-, z-)

is the estimated mass of (X, Z) at (x, z). In general, P§{x, y) does not have an explicit
formula. A possibly more serious problem is the negative mass problem that occurs with
most bivariate survival estimators, including those mentioned earlier. It is not clear how
ptt, y) is affected if Px z(Au, Az) < 0 for some (u, v).
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Estimation of successive duration times 565

In principle, the weighting idea can be applied to any decomposition expression of
F(x, y) or other functions of interest in which the effect of censoring can be measured. For
example, define D(x, y) = pr(AT ^ x, Y ̂  y) to be the distribution function of {X, Y), which
can be expressed as

Bn(du,dv)
( 7 )

— co J — oo

where Sn{u, v) = pr(X ^ u, Y^ v, 8X = 5y = 1) is a sub-distribution function. Burke (1988)
proposes an estimate of F(x, y) based on (7) given by

and an estimate of F(x, y) is given by

F{x, y) = l - D{x, oo) - 5(oo, y) + 3(x, y).

Note that the Burke estimator only uses data with 5X = 5y = 1, Case 3.
Visser (1996) suggests estimating F(x, y) by estimating AY\x=x(dv), which is related to

F(x, y) through the identity

F(x,y)=- I pT(Y>y\X = u)F1(du)=- | [1 i1 -^\x=u{dv)}F,{du), (10)

where Fl(du) = Fl(u) — Fl{u—). Note that, in some applications, pr(Y>y|X = x), which
assesses the effect of X on the survival probability of Y, is the quantity of interest. The
main advantage of estimating AY\x=x(dv) is that

*r\x=u(dv) = pT(Yedv\Y^v,X = u) = pr(?edv,5y=l\X = u,dx=l,Y^v). (11)

If X is discrete, A.Y\x=x(dv) can be estimated by a ratio of empirical functions:

,5x=l,Yl = y , d y = l )
(jt_ s _ f , • (12)

,i=1 i^Aj — x, oXf — i , it^y)
Hence F(x, y) can be estimated by plugging A°|X=I(d}') into (10), giving P°(x, y), say. With
additional assumptions on the discreteness of Y and Cu several analytical properties of
A^\x-=x(dy) and P°(x, y), such as their asymptotic variances, have been deduced. However,
when X is continuous, estimating AY\x=x(dv) requires special smoothing techniques and
can be very complicated when the dependent censoring condition is taken into account;
see Dabrowska (1987) for references in this direction.

If X is discrete or grouped, so that pr(X = u) > 0, one can alternatively apply the weight-
ing technique to estimate pr(X = u, Y> y) directly. Since

F(x,y)= £ pr(X = u, Y>y),
u>x

F(x, y) can be estimated by

Previous analysis shows that there are several ways of estimating F(x, y) under the
dependent censoring structure. Apparently F(x, y) can handle more general situations and,
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566 WEIJING WANG AND MARTIN T. WELLS

compared to the Burke estimator, utilises more data. It is clear that the path decomposition
accounts for the serial feature of the data and can take the advantage of usable information.

4. ASYMPTOTIC PROPERTIES OF P(X, y)

In this section we discuss the large-sample behaviour of the proposed estimate. We first
claim that P(x, y)^>F(x, y) in probability. Note that, since G^ . ) -^^ . ) , in probability, it
follows that

> x 5 = l Y i = v , S y i = l ) _ "

nfjiiu + v)

pr(X e du, Cx > u, Ye dv, C1 — u>v)

= [ F(du,
Ju>x

j >u + v)

dv)

in probability. Similarly, also in probability,

pr(X edu, Y>v,C1 — u>v)
u, v).

JllAitDJ Ju>x pr^!>M-|-UJ Ju>x

It follows that

F(x,dv) _
AY{x>x(Av)^ - p^ v_^-AY\x>x(dv)

in probability. Since each component in (5) is consistent, P(x, y) -»F(x, y) in probability.
It can be shown that the limiting distribution of ̂ {/'(x, y) — F(x, y)} converges weakly

to a zero-mean Gaussian process on D([0, TX] X [0, T2]), where D denotes the cadlag
space containing right continuous functions with left-hand limit, and (T1,r2) satisfies
pr(^ > Ti, Y > T2) > 0. A sketch of the proof is given in the Appendix. The variance of the
limiting processes of ni{P(x, y) — F(x, y)}, however, is quite complex. One can use Efron's
(1981) bootstrap to construct reliable standard error estimates.

5. AN EXAMPLE

We study a dataset adapted from Lawless (1982, p. 477) to illustrate the proposed idea.
Experiments were conducted to investigate the failure of epoxy electrical cable insulation
specimens under a constant voltage stress of 55 kilovolts. The data are presented in Table 1,
where X denotes the time to initiate a defect and Y the subsequent additional elapsed
time to failure. Three specimens (6, 13, 16) had not developed the first failure at the end
of the study and induced complete censorship for the subsequent failures.

To compute AY\x>x(AYj) based on (4) one has to assign the weight, l/G1(xi+ Yj), to
observations in Ry\x>x{Yj)- The estimate G^.) based on the original dataset is listed in
Table 2. It can be seen that 1/G\(t) = 1 for t < 1740. It turns out that 1/G^X; + Y}) = 1 for
all observations in S*, which implies that all the observations contributing to A.Y\x>x(AYj)
for x, Yj > 0 receive equal weights. Thus, based on the original dataset, the proposed
estimator P(x, y) is the same as the Campbell-FSldes estimator, and P2(y) is the same as
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Estimation of successive duration times

Table 1. Cable insulation failure data; X, the
initiation time of the first failure; Y, the time to

subsequent failure

567

Specimen Specimen

1
2
3
4
5
6
7
8
9
10

228
106
246
700
473

>1740
155
414
1374
128

30
8
66
72
25
—
7
30
90
4

11
12
13
14
15
16
17
18
19
20

1227
254

>2440
435
1155

>2600
195
117
724
300

39
46
—
85
85
—
27
27
21
96

* is replaced by ' > 85' for the modified data.

Table 2. Cable insulation failure data: Estimates of Gj(.) based on
original and modified data; G1(.), the estimates based on original

data; (J* (.), the estimates based on the modified data

Gut)

114

1
1

498

1
1

132

1
1

520

1
1

144

1
1

745

1
1

162

1
1

772

1
1

222

1
1

1240

1
0-83

258

1
1

t
1266

1
0-83

300

1
1

1464

1
083

312

1
1

1740

067
056

396

1
1

2440

033
028

444

1
1

2600

0
0

the Kaplan-Meier estimator. For biomedical data, patients usually enter the study at
different times and hence it seldom happens that all censored cases correspond to the
patients whose first survival times exceed the whole study time.

To see the effect of weighting, we slightly modify the dataset by letting Y15 be censored,
that is y15 > 85. The estimates of Gj(.) based on the modified data, denoted by 6*(.), are
also given in Table 2. To compute P{ 117, 4), one has to calculate/*^ 117) and Ay|A:>117(A4).
Note that Rr\x>m(4) contains observations 1, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18,
19, 20. In calculating Ay|X>117(A4), an observation i in RY\x>in(4) receives weight
1/Gf(x,+ 4). It turns out that observation #9 receives weight l/Gf(1374 + 4) = 0-83,
and the rest all receive weight 1. It follows that Am>117(A4) = 00617. Since F!(117) =
0-9, / ' ( i n , 4) = 0-8444. The estimates of F(x, y) based on the modified data are summar-
ised in Table 3. Note that P(x, y) is not monotone in the direction of x. It is well
known that most nonparametric bivariate estimators assign negative mass (Pruitt,
1991). Also, the fairly irregular weight assigned to P(x, y) may have some contribution
on the negative mass. When the sample size increases, the effect of negative mass
becomes less serious. In the following simulation studies, P(x, y) performs fairly well
under moderate sample size.
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568 WEIJING WANG AND MARTIN T. WELLS

Table 3. Cable insulation failure data: Estimates of P{x, y) based on the modified data

X

0
106
117
128
155
195
228
246
254
300
414
435
473
700
724

1155
1227
1374

0

10
0-95
090
085
O80
075
O70
065
060
055
O50
045
O40
035
O30
025
0-20
015

4

094
089
084
085
0-80
0-75
0-70
065
O60
055
O50
045
O40
035
O30
025
O20
015

7

088
083
078
079
080
075
070
065
0-60
055
050
0-45
0-40
035
0-30
0-25
0-20
015

8

083
083
078
079
O80
075
O70
065
O60
055
O50
045
O40
035
O30
025
O20
015

21

077
077
072
073
0-74
069
064
0-59
054
0-48
043
038
033
027
O30
025
020
015

25

071
072
066
0-67
0-68
0-63
058
0-53
047
042
036
031
033
027
O30
025
O20
015

27

060
060
061
061
062
063
058
053
047
042
036
0-31
033
027
0-30
025
020
015

y
30

048
049
049
O50
050
051
052
0-46
0-41
035
0-36
031
033
027
O30
025
O20
015

39

041
042
042
042
0-43
044
0-44
0-39
033
028
028
023
024
018
019
013
O20
015

46

036
036
037
037
037
037
038
033
033
028
028
023
024
018
019
013
020
015

66

O30
030
O30
031
031
031
032
033
033
0-28
028
023
024
018
019
013
020
015

72

024
024
024
025
0-25
0-25
0-26
0-26
027
021
022
015
016
018
019
013
0-20
015

85

019
019
019
019
019
020
020
020
021
015
015
015
016
018
019
013
020
015

90

008
009
009
009
O09
O09
009
009
009
0
0
0
0
0
0
0
0
0

6. SIMULATION RESULTS

In this section we study the finite sample performance of estimators of F2(y) and F(x, y)
discussed earlier. In the simulations (X, Y) are generated from a continuous bivariate
model, proposed by Clayton (1978), whose survival functions are of the form

where a is an association parameter related to Kendall's tau, denoted by T, by

+ l). (14)

Note that, when X and Y are independent, T = 0, but the converse is not true. We used
the algorithm by Prentice & Cai (1992) to generate (X, Y) by letting X~Ex( l ) and
y~Ex( l ) . Here C1 is generated from an exponential distribution and

The censoring rate of X is around 30% and the censoring rates of Y and X + Y are
around 50%.

A series of Monte Carlo simulations with n = 250 were performed. The degree of associ-
ation between X and Y varies from T = 0 to T = 0-5. The average bias and standard
deviation of the estimates on some selected points are presented. Table 4 summarises the
results for the marginal estimators of F2{y). Note that, even when X and Y are slightly
correlated, the Kaplan-Meier estimator can be quite biased. With additional estimation
of the weights, the proposed estimator, F(0, y), shows larger variation, especially when y
approaches the tail region, since l/G^.) becomes more variable.

Tables 4 and 5 summarise the results for three estimators of F(x, y), namely the proposed
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Estimation of successive duration times

Table 4. Simulation summary statistics for the marginal estimators ofF2(y)'.
(a), the average bias x 103 (standard deviation x 103) of the proposed
estimator, (b), the average bias x 103 (standard deviation x 103) of the

Kaplan-Meier estimator. The replication number is 1000

569

T = 0

T = 0-2

T = 0-5

T = 0

T = 0 2

T = 0 5

(a)
(b)

(a)
(b)

(a)
(b)

(a)
(b)

(a)
(b)

(a)
(b)

F2(y) = O973

0146(14-52)
0364(12-59)

0191 (12-46)
-2-926(1317)

O025 (11-32)
-6-901 (1406)

-O508 (23-33)
- 0 1 8 1 (20-26)

- 0 3 2 7 (2O07)
-3-244(21-04)

0553(17-51)
-6-880(22-08)

F2(y) = 0-719

0454 (41-88)
-O404 (36-69)

-2-544(39-35)
-31-20(3806)

-2-536(36-66)
-7023(39-55)

n =
- 0 4 0 5 (63-90)
- 0 6 3 8 (56-35)

-3-272(6074)
— 31-23 (5815)

- 3 1 3 6 (56-73)
-7018(6096)

F2(y) = 0-562

250
0174 (46-30)

- 0 1 0 0 (4O73)

-3-770(45-30)
-42-37(41-41)

-4-021 (43-31)
-9O23 (41-79)

100
— 1-893 (74-73)
— 1145 (66-79)

-6-260(73-64)
-43-33 (67-25)

-6-447(69-40)
- 9 7 1 5 (66-54)

F2(y) = 0313

— 1-783 (48-80)
- 0 8 2 4 (4300)

-6-489 (51-29)
-48-54 (41-33)

— 6-750 (5101)
-106-68(37-47)

-4-880 (78-71)
-4-172 (69-95)

— 12-66 (81-66)
-52-80(65-72)

— 15-82 (83-39)
-111-81 (6114)

estimator in (5), the Burke estimator (1988) and the Campbell-F6ldes estimator. The
Dabrowska estimator was also studied giving results almost identical to those of the
Campbell-Foldes estimator. Note that previous studies indicted that the Dabrowska esti-
mator usually outperforms the Campbell-FSldes estimator when X and Y do not follow
a particular order; see Pruitt (1990) and van der Laan (1996) for more on comparisons
between various estimates of the bivariate survival function. We also carried out the same
study at n = 100 and found similar results.

When T = 0, see Table 5(a), the Campbell-Foldes estimator performs best but, as T
increases, it may produce large bias. Our estimator, P(x, y), in general performs well in
terms of bias and variation under all choices of T and sample size. We also carried out
the same simulation at n = 100 and found that, although the Burke estimator also
accounts for dependent censoring, it shows poor performance and in general has larger
variance. This may be because the effective sample size for the Burke estimator
is smaller. It is interesting to note that the Burke estimator performs better as y
approaches the tail, whereas P(x, y) behaves in an opposite way. A possible explanation
is that the Burke estimator estimates pr(X ^ x, Y ̂ y) first so that more data are
included when y gets larger.
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Table 5. Simulation summary statistics for the bivariate esti-
mators when (X, Y) ~ Clayton (T = 0), {X, Y) ~ Clayton (T = 0-2)
and {X, Y) ~ Clayton (T = 0-5), with X 30% censored and Y 50%

censored with n = 250.

(a) (X, Y) ~ Clayton (T = 0)

F(x,y) Proposed Burke

(x,y)

(b) (X, Y) ~ Clayton (T = 0-2)

F(x, y) Proposed Burke

(c) (X, Y) ~ Clayton (T = 0-5)

F(x, y) Proposed Burke

C&F

(0027, 0-027)
(0-330, 0-027)
(0-577, 0-027)
(1-160,0-027)
(0-330, 0-330)
(0-577, 0-330)
(1-160,0-330)
(0-577, 0-577)
(1160,0-577)
(1160, 1160)

0-949
0-701
0-549
0-306
0-517
0-404
0-225
0-315
0-176
0-098

-0-810 (17-42)
- 1 1 2 6 (3064)
-2-086 (34-96)
-1-279(3503)
- O 0 0 6 (43-78)
- O 3 0 1 (4403)

1-398 (39-21)
- 0 4 1 3 (4518)

0128 (4009)
— 1053 (37-81)

2-830
2-089
0954
4-450
4091
3-249
7-392
3-830
6-953
7-320

(1910)
(44-47)
(5022)
(52-29)
(52-43)
(55-31)
(51-83)
(55-49)
(5085)
(46-60)

- 0 6 2 5
- 0 9 6 3
-2-001
-1-233
- 0 8 7 3
- 1 0 9 5

0-972
-1-042
- 0 5 4 9
- 0 8 6 8

(15-69)
(29-84)
(33-48)
(34-61)
(39-72)
(40-77)
(36-82)
(41-34)
(37-69)
(34-58)

C & F

(0027, 0027)
(O330, 0027)
(0577, O027)
(1160,0027)
(O330, 0-330)
(0-577, 0-330)
(1-160,0-330)
(0577, 0577)
(1160, 0577)
(1160, 1160)

0948
O702
O550
O307
0540
0-435
0-256
0-357
0-220
O150

0381
0545
0841

- 0 6 3 4
- 1 1 7 9
- O 2 0 6
- 0 6 7 5
-1-645
-2-398
-5-286

(15-52)
(29-94)
(32-71)
(34-91)
(4098)
(4021)
(38-53)
(42-69)
(39-65)
(42-62)

3-817
3-685
2-935
2-677
2-870
2-416
2-788
1-477
1-643
0518

(15-99)
(37-21)
(43-34)
(49-44)
(45-43)
(48-55)
(49-82)
(49-58)
(5033)
(51-30)

-2-607
— 1-411
- 0 5 2 3
- 1 1 2 1
-19-20
— 12-91
-5-833
-19-94
- 1 0 6 6
-16-55

(15-86)
(29-84)
(32-66)
(34-96)
(4022)
(39-57)
(28-27)
(40-63)
(38-40)
(38-55)

C & F

(O027,
(O330,
(0577,
(1160,
(O330,
(0577,
(1160,
(0577,
(1160,
(1160,

O027)
O027)
O027)
O027)
O330)
O330)
O330)
0577)
0577)
1160)

0949
0709
0556
0312
0589
0493
0298
0432
0282
0252

0329
- 0 3 4 5
- 0 0 9 9
- 0 2 9 3
- 1 0 6 2
- 0 8 4 2
- 0 9 3 8
-2-476
-1-326
- 4 1 5 3

(14-65)
(2815)
(33-63)
(34-63)
(35-97)
(36-70)
(35-40)
(35-35)
(35-95)
(4045)

3045
2-268
2199
1-472
1-368
0856
0874

- 0 6 7 6
0715

-O140

(1516)
(32-11)
(39-91)
(43-54)
(38-60)
(4410)
(43-69)
(46-86)
(43-73)
(4416)

-6-253
- 3 0 9 1
-1-420
- O 5 4 0

-33-380
-18-310
-4-658

-33-490
-8-648

-23-080

(1516)
(3211)
(39-91)
(34-67)
(38-29)
(38-46)
(3619)
(4061)
(3716)
(4118)

In the left-hand column, the first item is the selected grid point and the next is
the true survival probability. The first number in each cell is the average bias
(x 103), and the second number, in parentheses, is the standard deviation (x 103)
of the estimate based on 1000 replications.
Proposed, proposed estimator (5); Burke, Burke (1988) estimator, C&F,
Campbell-Folder estimator.
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APPENDIX

Weak convergence results

We briefly discuss the weak convergence result for n*{/?(x, y) — F(x, y)}. We have

n*{P(x,y)-F(x,y)}=n*P{y\x){P1{x)-F1{x)}+n*F1(x){P{y\x)-F(y\x)h (Al)

where

F(y\x)=Y\{l-Anx>x(dv)}
vtiy

is the product limit estimator of F{y\x) = pr(Y>y\X > x). It can be shown, by tedious Taylor
expansions and integration by parts, that ni{AY\x>x(y) — AY\x>x(y)} is a smooth Hadamard differ-
entiable functional of n*{G,(.) — Gt{.)} and the following processes:

nHHu(x, y) - Hn(x, y)} =»*{-*£ 7(1, > x, % > y, 5Xl = 1, 8,t = 1)

x, Y>y,5x> I, 8, =

n*{filo(x,y)-Hlo(x,y)} =n* \- £

Weak convergence of ni{AY\x>x(y) —AYix>x(y)} can be derived by known results on empirical
processes and the univariate Kaplan-Meier estimator. Since, for each x e f O , ^ ] , F(y\x) is a
functional of AY\x>x(y) and is compactly differentiable on £>[0, T 2 ] (Andersen et al., 1991, Proposi-
tion II 8.7), the weak convergence of n*{AY\x>x(y) — Arix>x{y)} implies the weak convergence
of ni{P(y\x)-F(y\x)}. Since F{y\x) and P^x) are consistent estimators and n* {P^x) — F^x)}
converges weakly to a zero mean Gaussian process on Z)[0, Tj] weak convergence of
n*{P(x, y) - F{x, y)} on £>([0, T J X [0, T 2 ] ) can be established. Since P2{y) is simply P(0, y), weak
convergence of n*{P2(y) — F2(y)} on I>[0, T2] follows.
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