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Abstract Bivariate survival analysis has wide applications. In the presence of covari-
ates, most literature focuses on studying their effects on the marginal distributions.
However covariates can also affect the association between the two variables. In this
article we consider the latter issue by proposing a nonstandard local linear estimator for
the concordance probability as a function of covariates. Under the Clayton copula, the
conditional concordance probability has a simple one-to-one correspondence with the
copula parameter for different data structures including those subject to independent
or dependent censoring and dependent truncation. The proposed method can be used to
study how covariates affect the Clayton association parameter without specifying mar-
ginal regression models. Asymptotic properties of the proposed estimators are derived
and their finite-sample performances are examined via simulations. Finally, for illus-
tration, we apply the proposed method to analyze a bone marrow transplant data set.

Keywords Multivariate local polynomial regression · Clayton copula ·
Non-informative missing data · Dependent censoring · Dependent truncation

1 Introduction

Copula models have been a popular choice for modeling multivariate failure-time data
due to the nice feature that the dependence structure can be studied separately from the
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marginal distributions. Consider the bivariate case. Let T1 and T2 be a pair of lifetime
variables with continuous marginal distribution (or survival) functions denoted as
F1 and F2, respectively. Sklar’s theorem ensures that there exists a unique copula
function C : [0, 1]2 → [0, 1] such that the corresponding joint function F can be
written as F(t1, t2) = C{F1(t1), F2(t2)}. The dependence structure is characterized
by the copula function C(·, ·).

Semi-parametric inference for parametric versions of C has been extensively stud-
ied for right censored data without covariates (Clayton 1978; Oakes 1989; Shih and
Louis 1995; Wang and Wells 2000). In recent years, applications of copula models
have been extended to more complicated data structures, including semi-competing
risks data (Day et al. 1997; Fine et al. 2001; Wang 2003; Jiang et al. 2005; and Lakhal
et al. 2008) and dependent truncation data (Chaieb et al. 2006; Emura and Wang 2010)
under which the copula structure also helps to resolve the problem of non-identifiability
in marginal inference.

When covariates Z are present, they may affect the dependence structure. The
dependence structure conditional on Z = z can be described by the conditional copula
Cz . Gijbels et al. (2011) proposed a nonparametric estimator for the conditional copula
based on kernel-smoothing of the bivariate and marginal empirical distributions. Acar
et al. (2011) proposed another kernel-based method for estimating the conditional
copula association parameter using the local likelihood approach (Fan and Gijbels
1996). Both estimations are based on complete data from a bivariate joint distribution.
Their methods are two-stage procedures: first estimate the marginals, then estimate
the copula parameters using the marginal estimates from the first stage. However
those approaches cannot be extended to semi-competing risks data and dependent
truncation data in which the marginal functions are not identifiable nonparametrically.
In this paper, we propose a general approach to estimating the conditional concordance
probability for various data structures. Under the Clayton copula model, this method
provides an estimator for the association parameter as a function of the covariates
applicable to various data structures.

When one failure time is subject to dependent censoring by the other time variable,
the data structure is called semi-competing risk data. It turns out that one marginal
distribution is not identifiable nonparametrically. Ding (2010) studied the identifiabil-
ity condition when the copula assumption is imposed on the joint distribution. Most
existing methods for analyzing this data structure make the implicit assumption that
covariates have no effect on the dependence structure. The focus is mostly on marginal
regression analysis (Lin et al. 1996; Lin and Ying 2003; Peng and Fine 2006; Huang
and Zhang 2008; Ding et al. 2009). Some papers (Fine and Jiang 2000; Peng and Fine
2007) proposed to estimate the copula parameter assuming that it is constant across
different covariate values. Ghosh (2006) proposed to test constancy of association
across discrete covariate strata. Hsieh and Wang (2008) considered marginal regres-
sion analysis in which the dependence structure can vary only for discrete covariate
groups. Similar issues also arise in dependent truncation data (Ding 2012).

The strength of association for a copula Cz can be measured by Kendall’s tau
τ(z) = 4

∫ ∫
Cz(u, v)dCz(u, v) − 1, or equivalently the concordance probability

α(z) = (τ (z) + 1)/2 between pairs of the bivariate failure times. We propose to
estimate α(z) by a local linear estimator using concordance indicators as the response
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variables in regression. While properties of multivariate local polynomial regression
have been well studied in literature (e.g., Ruppert and Wand 1994; Opsomer and
Ruppert 1997), the problem is fundamentally different from the usual local polynomial
regression setting. Here the response variables are the concordance indicators for pairs
of observations and hence are no longer mutually independent. Also, for the data
structures which involve censoring or truncation, not all the bivariate failure times
are observed. Accordingly the concordance relationship between some pairs is not
observable either. In these cases, we modify the proposed local linear estimator to
estimate the conditional concordance probability for comparable pairs denoted as
α∗(z). For dependent truncation data, 2α∗ − 1 is the conditional Kendall’s tau studied
in Tsai (1990), Martin and Betensky (2005) and Emura and Wang (2010).

The missing-at-random mechanism is the key property to further establish α∗(z) =
α(z) for the data structures in the presence of censoring and truncation. The Clayton
copula has a special feature that the strength of association remains constant across
time. We will show that the Clayton assumption leads to a missing-at-random property
which makes α∗(z) = α(z) for all the data structures in the presence of dependent cen-
soring and truncation considered here. Without covariate effects, several papers includ-
ing Fine and Jiang (2000), Fine et al. (2001) and Jiang et al. (2005) utilized the concor-
dance information between pairs of the two variables to estimate the Clayton associ-
ation parameter. Our estimator provides a unified approach to estimating the Clayton
association parameter applicable to various data structures including dependent cen-
soring and dependent truncation without specifying the marginal regression models.

The paper is organized as follow. In Sect. 2, we define the model assumption and four
common data structures including those with censoring and truncation. The asymptotic
properties of the proposed estimator are discussed in Sect. 3. We then evaluate the
estimator through simulation studies and apply it to a bone marrow transplant data set
for illustration.

2 Model assumption and data structures

2.1 Local linear estimation for concordance probability

The copula representation of the bivariate joint function of (T1, T2) conditional on
covariate value Z = z can be written as

Fz(t1, t2) = Cθ(z){F1,z(t1), F2,z(t2)},

where F1,z(·) and F2,z(·) are the conditional marginal functions. We assume that Z is
a d-dimensional vector of covariates.

Let (T1,i , T2,i ) be independently and identically distributed (i.i.d.) random repli-
cations of (T1, T2). Define δi j = I {(T1,i − T1, j )(T2,i − T2, j ) > 0} as the concordance
indicator for (T1,i , T2,i ) and (T1, j , T2, j ) (i �= j). Then the concordance probability
conditional on Zi = Z j = z is α(z) = Pr(δi j = 1|Zi = Z j = z). Note that for a
copula model, α(z) = 2

∫ ∫
Cθ(z)(u, v)dCθ(z)(u, v). We propose to estimate α(z) by

the local (in z) linear estimator that minimizes
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∑

i< j

[δi j − α(z) − βT
1 (Zi − z) − βT

2 (Z j − z)]2 K H [(Zi − z, Z j − z)T ]

over α(z) and β = (βT
1 , βT

2 )T , where

K H [(u1, u2)
T ] = [|H |−1 K (H−1u1)][|H |−1K (H−1u2)]

= |H |−2 K (H−1u1)K (H−1u2),

and the determinant |H | → 0 when n → ∞. Denote the resulting estimator as α̂(z).
Notice that the 2d-dimensional kernel K H (·) is a d-dimensional kernel K multiplied
by itself and the 2d-dimensional bandwidth matrix is

(
H 0
0 H

)

with H being d-dimensional. Notice that our setting is different from the standard
2d-dimensional multivariate nonparametric regression in that Zi and Z j are actually
measurements of the same variable from different subjects. Hence we use the same
bandwidth matrix H for Zi and Z j due to symmetry.

In the presence of censoring or truncation, δi j may not be observable for some (i, j)
pairs, which can be viewed as a missing data phenomenon. To tackle the problem, we
first consider estimating the concordance probability for a subset of the sample with
δi j observable for all (i, j) pairs in the subset. Specifically, define �i j as the indicator
that the pair (i, j) belongs to the target subset. Let α̃(z1, z2) = E[δi j |�i j = 1, Zi =
z1, Z j = z2]. Then the local linear estimator estimates the conditional probability
E(δi j |�i j = 1, Zi = Z j = z) = α̃(z, z) by minimizing

∑

i< j

[δi j − α(z) − βT
1 (Zi − z) − βT

2 (Z j − z)]2�i j K H [(Zi − z, Z j − z)T ] (1)

over α(z) and β = (βT
1 , βT

2 )T .
A crucial missing-at-random condition is

E(δi j |�i j = 1, Zi = Z j = z) = Pr(δi j = 1|Zi = Z j = z) = α(z). (2)

When condition (2) holds, α̂(z) estimates the quantity α̃(z, z) = α(z) which has the
natural correspondence with the copula parameter θ(z). Without condition (2), we may
still use α̂(z) to examine covariate effect which however cannot be easily converted to
the copula parameter θ(z). We will show that condition (2) holds for some common data
structures subject to censoring and truncation when the Clayton copula assumption is
made. Thus the estimator α̂(z) provides a unified approach to estimating the covariate
effect on the Clayton association parameter in these data structures.
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2.2 Four data structures

Now we discuss four different data structures that (1) can be applied with appropriate
construction of �i j .

Data structure 1: bivariate failure-time data without censoring. We observe an
i.i.d. sample (T1,i , T2,i , Zi ) (i = 1, ..., n) from (T1, T2). Thus �i j = 1 for all i, j .

Data structure 2: bivariate failure-time data with independent right censoring.
Denote (Y1,i , Y2,i ) (i = 1, . . . , n) as a random sample from the bivariate censor-
ing variables, (Y1, Y2). It is assumed that (T1, T2) are independent of (Y1, Y2) con-
ditional on Z = z. Under right censoring, one observes (X1,i , X2,i , δ̃1,i , δ̃2,i , Zi )

(i = 1, . . . , n), where Xk,i = Tk,i ∧ Yk,i and δ̃k,i = I (Tk,i ≤ Yk,i ) for k = 1, 2
and x ∧ y denotes the minimum of x and y. In this case, �i j = 1 if and only if
Tk,i ∧ Tk, j < Yk,i ∧ Yk, j for both k = 1, 2. That is, Xk,i ∧ Xk, j corresponds to an
uncensored point for each k = 1, 2.

Data structure 3: semi-competing risks data with independent right censoring.
Consider the situation that T1i is subject to dependent censoring by T2i and both
are subject to independent censoring by Yi , an independent replication from Y . It is
assumed that (T1, T2) are independent of Y conditional on Z = z. Observed variables
can be written as (X1,i , X2,i , δ̃1,i , δ̃2,i , Zi ) (i = 1, . . . , n), where X1,i = T1,i ∧ T2,i ∧
Yi , X2,i = T2,i ∧ Yi , δ̃1,i = I {X1,i = T1,i } and δ̃2,i = I {X2,i = T2,i }. In this case,
�i j = 1 if and only if T1,i ∧ T1, j < T2,i ∧ T2, j < Yi ∧ Y j . That is, Xk,i ∧ Xk, j

corresponds to an uncensored point for each k = 1, 2.
Data structure 4: dependent left truncation data with independent right censoring.

The variable T2i is subject to left truncation by T1i and independent right censoring
by Yi , an independent replication from Y . It is assumed that (T1, T2) are independent
of Y conditional on Z = z. One observes (T1,i , X2,i , δ̃2,i , Zi ) (i = 1, . . . , n) subject
to T1,i ≤ X2,i , where X2,i = T2,i ∧ Yi , δ̃2,i = I {X2,i = T2,i }. In this case, �i j = 1 if
and only if T1,i ∨ T1, j < X2,i ∧ X2, j and T2,i ∧ T2, j < Yi ∧ Y j , where x ∨ y denotes
the maximum of x and y.

2.3 Clayton copula and condition (2)

For the first data structure, without censoring or truncation, �i j = 1 for sure and obvi-
ously the condition (2) holds for all copulas. For the second and third data structures
with censoring, we assume the Clayton copula of the form:

Cθ(z)(u1, u2) = (u−θ(z)
1 + u−θ(z)

2 − 1)−1/θ(z) (θ(z) > 0).

For the fourth data structure, we assume the extended-Clayton copula of the form:

C̃θ(z)(u1, u2) = u1 − (u−θ(z)
1 + (1 − u2)

−θ(z) − 1)−1/θ(z) (θ(z) > 0).

Imposing the extended-Clayton copula on the function F(t1, t2)= Pr(T1 ≤ t1, T2 ≤ t2)
is equivalent to imposing a Clayton copula on F̃(t1, t2) = Pr(T1 ≤ t1, T2 > t2).
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For dependent truncation data, mathematically it is better to impose a copula on
F̃(t1, t2) (Chaieb et al. 2006; Emura and Wang 2010).

In Appendix 1, we verify Eq. (2) based on these data structures. For continuous
survival times T1 and T2, under the Clayton copula, θ(z) = [2α(z) − 1]/[1 − α(z)].
Therefore, estimation of θ(z) is equivalent to that of α(z).

3 Asymptotic properties

To derive the asymptotic properties and variance formula of the proposed estimator,
we adopt similar notations as in Ruppert and Wand (1994) for multivariate local
polynomial regression. Specifically denote δ = (δi j )i< j , a n(n − 1)/2-dimensional
vector, as the response. The input variable for δi j is Zi j = (Z T

i , Z T
j )T where vT

denotes the transpose of vector v. Since the conditional expectation of δi j is α̃(Zi j ),
we are working on a regression problem with δi j being the response variable and the
2d-dimensional vector Zi j being the explanatory variables. However, the problem is
different from the standard setting for (2d)-dimensional multivariate local polynomial
regression. First, we are only interested in estimating the d-dimensional function
α̃(z, z) instead of the 2d-dimensional function α̃(z1, z2). Secondly, the response δi j and
input Zi j are not independent replicates as in the usual regression setting. Specifically
(δi j , Zi j ) (i < j) are not independent among different (i, j) pairs. Finally the value
of some δi j may be unknown. As discussed earlier, we will select pairs with �i j = 1
in the analysis so that the corresponding δi j is always observable.

To simplify the notations, we use z = (zT , zT )T . For example, Zi j − z denotes
((Zi − z)T , (Z j − z)T )T , and α(z) = α̃(z, z) = α̃(z). So Eq. (1) can also be written
as
∑

i< j [δi j − α̃(z) − βT (Zi j − z)]2�i j K H (Zi j − z). Denote the gradient of α̃(z) as

Dα(z) =
(

∂
∂z1

α̃(z1, z2)

∂
∂z2

α̃(z1, z2)

)

z1=z2=z

,

and the Hessian matrix of α̃(z) as

Hα(z) =
⎛

⎜
⎝

∂2

∂z1∂zT
1
α̃(z1, z2)

∂2

∂z1∂zT
2
α̃(z1, z2)

∂2

∂z2∂zT
1
α̃(z1, z2)

∂2

∂z2∂zT
2
α̃(z1, z2)

⎞

⎟
⎠

z1=z2=z

.

Properties about the asymptotic bias and variance of the estimator α̂(z) are summarized
in the following theorem. The proof is provided in Appendix 2.

Theorem 1 We assume the following technical conditions similar to those in Ruppert
and Wand (1994).

(i) The kernel function K is a compactly supported, bounded non-negative kernel
such that

∫
K (u)du = 1,

∫
K (u)uuT du = μ2(K )Id where μ2(K ) > 0 is a

scalar and Id is the d × d identity matrix. And all odd-order moments of K
vanish.
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(ii) When n → ∞, n|H | → ∞, and all entries in the symmetric positive definite
matrix H tend to zero. Also, the condition number of H is bounded.

(iii) Denote fZ as the density of Z. Assume that z is an interior point of the support
of fZ with fZ (z) > 0.

(iv) Denote the non-missing probability function g̃(z1, z2) = E[�12|Z1 = z1, Z2 =
z2] and ǧ(z1, z2, z3) = E[�12�13|Z1 = z1, Z2 = z2, Z3 = z3]. Assume
g̃(z, z) > 0, ǧ(z, z, z) > 0 and 0 < α(z) < 1.

Then

E[α̂(z)|Z1, ..., Zn] = α(z) + μ2(K )tr{H2Hα(z)} + op(tr(H2)) (3)

and

V ar [α̂(z)|Z1, ..., Zn] = 4(n − 2)ǧ(z, z, z)α̌(z, z, z)μ0(K 2)

n(n − 1)|H |[g̃(z, z)]2 fZ (z)
+ op(n

−1|H |−1), (4)

where tr(M) denotes the trace of matrix M, μ0(K 2) = ∫ [K (u)]2du and

α̌(z1, z2, z3) = Cov[δ12, δ13|�12 = �13 = 1, Z1 = z1, Z2 = z2, Z3 = z3]
= E[δ12δ13|�12 = �13 = 1, Z1 = z1, Z2 = z2, Z3 = z3]

−α̃(z1, z2)α̃(z1, z3).

To better understand the above results, let us consider the simple case of a univariate
Z . Then the scalar H = h → 0. The above theorem states that Bias(α̂|Z1, ..., Zn) =
Op(h2) and V ar(α̂|Z1, ..., Zn) = Op(n−1h−1). So the estimator has the best rate
of convergence when Op(h4) = Op(n−1h−1). That is h = n−1/5 and the rate of
convergence for α̂(z) is n−2/5.

Remark 1 Theorem 1 states the property of α̂(z) which estimates α∗(z) =
E(δi j |�i j = 1, Zi = Z j = z). Under condition (2), α∗(z) agrees with α(z) =
Pr(δi j = 1|Zi = Z j = z). For complete data, since condition (2) always holds, α̂(z)
can be directly translated to estimate θ(z) for any specified one-parameter copula fam-
ily such as Frank or Gumbel models (Nelsen 2006). For other three data structures,
we need to assume the Clayton copula under which the missing-at-random condition
in (2) holds. In these complicated data structures, α̂(z) can still estimate Clayton’s
association parameter.

Remark 2 Theorem 1 shows that the fitted estimate α̂(z) converges to the true value
α(z) for 0 < α(z) < 1. It may happen that some fitted values of α̂(z) fall outside the
unit interval [0, 1] especially when the true α(z) is near 0 or 1. Such a phenomenon
occurs rarely in our numerical studies. When they do happen, we can truncate these
estimates to make them equal to the nearest boundary value 0 or 1. Another possible
approach to dealing with this issue is to incorporate a link function g(·) : (−∞,∞) →
(0, 1) such thatγ (z) = g−1(α(z)) is unbounded. Then we estimateγ (z)by minimizing∑

i< j [δi j −g[γ (z)]−g′[γ (z)]βT
1 (Zi − z)−g′[γ (z)]βT

2 (Z j − z)]2 K H (Zi j − z). This
alternative extension is a topic for future exploration.
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The boundary effect is often a concern for smoothing techniques. Now we investi-
gate whether the asymptotic bias and variance remain the same order at the boundary
of the support supp( fZ ) for covariate Z . As in Ruppert and Wand (1994), we con-
sider a sequence z = zn converging to a point z∂ on the boundary of supp( fZ ). That
is, z = z∂ + H1/2c for a fixed c. We also assume the following condition to avoid
degeneracy.

(v) There is a convex set C with nonnull interior and containing z∂ such that

inf
z∈C

fZ (z) > 0. (5)

At the boundary point z = z∂ + H1/2c, the effective support of kernel is reduced.
Let Dz,H = {x : (z + H1/2x) ∈ supp( fZ )} ∩ supp(K ). We denote μ∗

z,0(K )=∫Dz,H

K (u)du, μ∗
z,1(K ) = ∫

Dz,H
K (u)udu, μH

z,2(K ) = ∫
Dz,H

K (u)uT HHα(z)Hudu =
O(H2) and μH

z,3(K ) = ∫Dz,H
uK (u)uT HHα(z)Hudu = O(H2). Also let

Nz =
∫

Dz,H

∫

Dz,H

(1 uT
1 uT

2 )T (1 uT
1 uT

2 )K (u1)K (u2)du1du2,

Tz =
∫

Dz,H

∫

Dz,H

∫

Dz,H

(1 uT
1 uT

2 )T (1 uT
1 uT

2 )K (u1)K (u2)K 2(u3)du1du2du3.

Theorem 2 Suppose that z = z∂ + H1/2c for a fixed c ∈ supp(K ). We assume
conditions (i)- (iv) as in Theorem 1 and condition (v) in Eq. (5). Then

Bias[α̂(z)|Z1, ..., Zn] = eT
1 N−1

z

2

⎛

⎜
⎜
⎝

2μ∗
z,0(K )μH

z,2(K )

μH
z,2(K )μ∗

z,1(K ) + μ∗
z,0(K )μH

z,3(K )

μH
z,2(K )μ∗

z,1(K ) + μ∗
z,0(K )μH

z,3(K )

⎞

⎟
⎟
⎠

+ op(tr(H2)) (6)

and

V ar [α̂(z)|Z1, ..., Zn] = 4ǧ(z, z, z)α̌(z, z, z)eT
1 N−1

z Tz N−1
z e1

n|H |[g̃(z, z)]2 fZ (z)
[1 + op(1)]. (7)

The proof of Theorem 2 is provided in Appendix 6. Theorem 1 and 2 show that
the conditional bias is of the same order Op(tr(H2)) at the interior as well as the
boundary. The conditional variance also remain the same order Op(n−1|H |−1) at the
boundary. Therefore asymptotically the proposed estimator does not suffer from the
boundary effect. This result is similar to that of Ruppert and Wand (1994). However
the finite sample performances, in particular the variance, can still be affected near the
boundary since this region contains fewer observations.
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4 Simulation studies

We examine the finite-sample performances of the proposed estimator and compare
it with the estimator proposed by Acar et al. (2011). The data generation scheme
is similar to that in Acar et al. (2011) for the purpose of comparison. Specifically
the covariate Zi is generated independently from Uni f orm(2, 5) for i = 1, . . . , n
and, given Zi , (U1,i , U2,i ) are generated from the Clayton copula Cθ(Zi )(u1, u2). Two
forms of θ(z) are considered: (1) linear calibration function θ(z) = exp(0.8z − 2)

and (2) Quadratic calibration function: θ(z) = exp(2 − 0.3(z − 4)2). Then we set
T1,i = −0.5 exp(γ1 Zi ) log(U1,i ) and T2,i = − exp(γ2 Zi ) log(U2,i ). This means that
the marginal distributions are exponentially distributed and Tk,i follows the accelerated
failure times (AFT) model with parameter γk such that log(Tk,i ) = γk Zi + ek,i for
k = 1, 2. We set n = 100 and replications=400. Throughout the section, we use the
Epanechnikov kernel function K (x) = max{0, 0.75(1 − x2)}.

We first assess the situation in the absence of censoring and truncation and compare
our estimator with the Acar-Craiu-Yao estimator which is obtained by maximizing a
local likelihood function based on a random sample of (U1, U2). Here since only
(T1,i , T2,i , Zi ) are observed, (U1,i , U2,i ) need to be estimated. We fit the AFT model
on T1,i ’s and T2,i ’s to obtain estimates of (Û1,i , Û2,i ) and then carry out the Acar-
Craiu-Yao procedure. We also study the effect of mis-specifying the marginal models
on the Acar-Craiu-Yao estimator by fitting marginal location shift (LOC) models,
Tk,i = γk Zi + ek,i for k = 1, 2. Acar et al. (2011) suggested a cross-validation rule to
select the bandwidth h from 12 candidate values, ranging from 0.33 to 2.96, equally
spaced on the logarithm scale. Since the proposed procedure is developed to work for
all four data structures, the bandwidth selection criterion should not rely on the local
likelihood. Accordingly we choose the value of h that minimizes the cross-validation
criterion

n∑

i=1

∑

j �=i

�i j [δi j − α̂−(i, j)(zi , z j )]2, (8)

where α̂−(k,l)(zk, zl) is the estimate from minimizing

∑

i< j

[δi j − α̃(zk, zl) − βT
1 (Zi − zk) − βT

2 (Z j − zl)]2�i j K H [(Zi − z, Z j − z)T ]

without using the concordance of (k, l)th pair.
As in Acar et al. (2011), the performances based on Kendall’s τ(z) = 2α(z)−1 are

reported. Three accuracy measures are evaluated: the average squared bias (ABIAS2),
the average variance (AVAR) and the average mean square error (AMSE) denoted as

ABIAS2(τ̂ ) = 1

b − a

b∫

a

{E[τ̂ (z)] − τ(z)}2dz,
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Table 1 Estimation of τ(z) without censoring and truncation under marginal AFT models (data structure 1)

(γ1, γ2) = (0,0) (γ1, γ2) = (0,2) (γ1, γ2) = (2,2)

Linear Quadratic Linear Quadratic Linear Quadratic

Our

ABIAS2 0.00003 0.00008 0.00170 0.00453 0.00039 0.00012

(0.00003) (0.00004) (0.00019) (0.00025) (0.00015) (0.00005)

AVAR 0.02844 0.01673 0.03455 0.02551 0.03283 0.02403

(0.00143) (0.00117) (0.00139) (0.00137) (0.00125) (0.00169)

AMSE 0.02847 0.01681 0.03625 0.03004 0.03322 0.02415

(0.00143) (0.00117) (0.00144) (0.00142) (0.00124) (0.00168)

M(h) 0.591 0.831 0.359 0.358 0.373 0.410

SD(h) 0.563 0.702 0.061 0.058 0.0955 0.152

A-C-Y (AFT, correct)

ABIAS2 0.00385 0.00374 0.00431 0.00488 0.00477 0.00486

(0.00040) (0.00036) (0.00045) (0.00045) (0.00044) (0.00044)

AVAR 0.01209 0.00866 0.01324 0.01015 0.01233 0.00960

(0.00048) (0.00047) (0.00055) (0.00050) (0.00052) (0.00047)

AMSE 0.01595 0.01240 0.01756 0.01503 0.01710 0.01447

(0.00074) (0.00074) (0.00084) (0.00084) (0.00079) (0.00081)

M(h) 1.899 1.649 1.852 1.669 1.889 1.680

SD(h) 1.105 0.977 1.134 0.965 1.088 0.970

A-C-Y(LOC, wrong)

ABIAS2 0.00202 0.00182 0.09768 0.20958 0.10368 0.02313

(0.00028) (0.00020) (0.00143) (0.00243) (0.00117) (0.00056)

AVAR 0.01153 0.00659 0.01424 0.01515 0.00955 0.00755

(0.00047) (0.00042) (0.00037) (0.00043) (0.00042) (0.00032)

AMSE 0.01356 0.00842 0.11193 0.22474 0.11323 0.03069

(0.00064) (0.00057) (0.00132) (0.00227) (0.00116) (0.00068)

M(h) 1.841 1.754 0.714 0.657 0.910 0.758

SD(h) 1.142 0.986 0.646 0.618 0.662 0.478

The number in the parenthesis below a quantity is the estimated standard deviation of that quantity
Calibration functions linear θ(z) = exp(0.8z − 2), quadratic θ(z) = exp(2 − 0.3(z − 4)2), Our proposed
estimator (1), A-C-Y (AFT) Acar-Craiu-Yao estimator by fitting the correct marginal AFT models, A-C-
Y (LOC) Acar-Craiu-Yao estimator by fitting wrong marginal LOC models, M(h) mean of the selected
bandwidth, SD(h) standard deviation of the selected bandwidth. n = 100 and replications = 400

AVAR(τ̂ ) = 1

b − a

b∫

a

E{τ̂ (z) − E[τ̂ (z)]}2dz,

AMSE(τ̂ ) = 1

b − a

b∫

a

E{[τ̂ (z) − τ(z)]2}dz = AB I AS2(τ̂ ) + AV AR(τ̂ )
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Table 2 Estimation of τ(z) without censoring and truncation with marginal AFT models under Frank
copula (data structure 1)

(γ1, γ2) = (0,0) (γ1, γ2) = (0,2) (γ1, γ2) = (2,2)

Linear Quadratic Linear Quadratic Linear Quadratic

Our

ABIAS2 0.00026 0.00020 0.00046 0.00081 0.00098 0.00035

(0.00016) (0.00093) (0.00014) (0.00015) (0.00019) (0.00011)

AVAR 0.03671 0.02731 0.04631 0.04203 0.04584 0.03662

(0.00166) (0.00134) (0.00147) (0.00177) (0.00165) (0.00161)

AMSE 0.03698 0.02752 0.04678 0.04284 0.04682 0.03697

(0.00170) (0.00136) (0.00149) (0.00180) (0.00163) (0.00159)

M(h) 0.622 0.762 0.360 0.350 0.354 0.376

SD(h) 0.547 0.681 0.095 0.048 0.056 0.086

A-C-Y

ABIAS2 0.01285 0.03907 0.01194 0.03861 0.01244 0.03994

(0.00062) (0.00122) (0.00060) (0.00113) (0.00060) (0.00107)

AVAR 0.01709 0.01828 0.01741 0.01696 0.01741 0.01635

(0.00048) (0.00060) (0.00049) (0.00059) (0.00049) (0.00057)

AMSE 0.02995 0.05736 0.02935 0.05557 0.02985 0.05630

(0.00076) (0.00109) (0.00075) (0.00103) (0.00077) (0.00098)

M(h) 0.686 1.555 0.706 1.573 0.743 1.602

SD(h) 0.657 1.129 0.729 1.089 0.746 1.085

The number in the parenthesis below a quantity is the estimated standard deviation of that quantity
Calibration functions linear θ(z) = exp(0.8z − 2), quadratic θ(z) = exp(2 − 0.3(z − 4)2), Our proposed
estimator (1) with incorrect Clayton copula, A-C-Y Acar-Craiu-Yao estimator by fitting the correct marginal
AFT models with incorrect Clayton copula, M(h) mean of the selected bandwidth, SD(h) standard deviation
of the selected bandwidth. n = 100 and replications = 400

respectively. Here [a, b] denotes the support of covariate Z . That is, a = 2 and
b = 5 for our simulation with Z ∼ Uni f orm(2, 5). Also note that we use the
average quantities ABIAS2, AVAR, and AMSE instead of the integrated quantities
IBIAS2(τ̂ ) = ∫ b

a {E[τ̂ (z)] − τ(z)}2dz, IVAR(τ̂ ) = ∫ b
a E{τ̂ (z) − E[τ̂ (z)]}2dz, and

IMSE(τ̂ ) = ∫ b
a E{[τ̂ (z) − τ(z)]2}dz in Acar et al. (2011). The integrated quantities

differ from the corresponding averaged quantities by a factor of b − a = 3. We also
observe that both estimators of τ(z) have larger variances for z closer to the boundary
region.

Based on 400 simulation runs, the empirical accuracy measures ABIAS2, AVAR,
and AMSE are shown in Table 1. The standard deviations of ABIAS2, AVAR, and
AMSE are also reported. When fitting the correct AFT marginal model, Acar-Craiu-
Yao estimator performs better. This is expected as Acar-Craiu-Yao estimator utilizes
the correct likelihood function while our estimator only uses the pairwise concordance
information without imposing any marginal model assumption. However, when the
wrong LOC marginal model is used, ABIAS2(τ̂ ) for the Acar-Craiu-Yao estimator
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Table 3 Estimation of τ(z) based on bivariate data with independent censoring (data structure 2)

(γ1, γ2) = (0,0) (γ1, γ2) = (0,2) (γ1, γ2) = (2,2)

Linear Quadratic Linear Quadratic Linear Quadratic

ABIAS2 0.00020 0.00023 0.00039 0.00129 0.00096 0.00026

(0.00009) (0.00014) (0.00012) (0.00021) (0.00029) (0.00010)

AVAR 0.05766 0.02785 0.05706 0.03787 0.07536 0.04029

(0.00338) (0.00187) (0.00237) (0.00245) (0.00344) (0.00259)

AMSE 0.05787 0.02808 0.05746 0.03916 0.07632 0.04055

(0.00337) (0.00182) (0.00237) (0.00246) (0.00349) (0.00256)

M(h) 0.753 0.968 0.375 0.382 0.406 0.493

SD(h) 0.694 0.814 0.096 0.093 0.127 0.242

Cen1 0.249 0.249 0.001 0.001 0.246 0.249

Cen2 0.395 0.398 0.403 0.396 0.390 0.401

The number in the parenthesis below a quantity is the estimated standard deviation of that quantity
Calibration functions linear θ(z) = exp(0.8z − 2), quadratic θ(z) = exp(2 − 0.3(z − 4)2), Cen1 censored
rate of T1, Cen2 censored rate of T2, M(h) mean of the selected bandwidth, SD(h) standard deviation of the
selected bandwidth. n = 100 and replications = 400

Table 4 Estimation of τ(z) based on semi-competing risks data with independent censoring (data
structure 3)

(γ1, γ2) = (0,0) (γ1, γ2) = (0,2) (γ1, γ2) = (2,2)

Linear Quadratic Linear Quadratic Linear Quadratic

ABIAS2 0.00108 0.00019 0.00070 0.00150 0.00052 0.00015

(0.00050) (0.00010) (0.00020) (0.00019) (0.00019) (0.00006)

AVAR 0.07918 0.03640 0.05651 0.03650 0.09390 0.04899

(0.00421) (0.00358) (0.00212) (0.00219) (0.00428) (0.00432)

AMSE 0.08027 0.03660 0.05722 0.03800 0.09442 0.04915

(0.00442) (0.00363) (0.00211) (0.00220) (0.00435) (0.00432)

M(h) 0.771 1.109 0.378 0.380 0.418 0.552

SD(h) 0.702 0.912 0.111 0.086 0.134 0.285

Cen1 0.391 0.352 0.002 0.001 0.392 0.349

Cen2 0.398 0.401 0.396 0.393 0.401 0.403

The number in the parenthesis below a quantity is the estimated standard deviation of that quantity
Calibration functions linear θ(z) = exp(0.8z − 2), quadratic θ(z) = exp(2 − 0.3(z − 4)2), Cen1 censored
rate of T1, Cen2 censored rate of T2, M(h) mean of the selected bandwidth, SD(h) standard deviation of the
selected bandwidth. n = 100 and replications = 400

inflates, resulting in larger AMSE than the proposed estimator. The results confirm
that the proposed estimator is more robust since it does not require any assumption on
the marginal models.

Since our simulations use the Acar-Craiu-Yao estimator with (Û1,i , Û2,i ) esti-
mated from the marginal model, the empirical accuracy measures reported here are
larger than the numbers shown in Acar et al. (2011) where data of (U1,i , U2,i ) are
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Table 5 Estimation of τ(z) based on dependent truncated data with independent censoring (data structure 4)

(γ1, γ2) = (0,0) (γ1, γ2) = (0,2) (γ1, γ2) = (2,2)

Linear Quadratic Linear Quadratic Linear Quadratic

ABIAS2 0.00006 0.00005 0.00129 0.00340 0.02234 0.06050

(0.00005) (0.00005) (0.00018) (0.00024) (0.00089) (0.00143)

AVAR 0.03292 0.01709 0.03576 0.02410 0.04816 0.03878

(0.00125) (0.00095) (0.00113) (0.00093) (0.00121) (0.00127)

AMSE 0.03298 0.01715 0.03706 0.02750 0.07050 0.09929

(0.00127) (0.00098) (0.00116) (0.00100) (0.00166) (0.00222)

M(h) 0.609 0.915 0.363 0.359 0.336 0.333

SD(h) 0.525 0.773 0.071 0.064 0.019 0.008

Cen2 0.168 0.183 0.136 0.143 0.178 0.185

The number in the parenthesis below a quantity is the estimated standard deviation of that quantity
Calibration functions linear θ(z) = exp(0.8z − 2), quadratic θ(z) = exp(2 − 0.3(z − 4)2), Cen2 censored
rate of T2, M(h) mean of the selected bandwidth, SD(h) standard deviation of the selected bandwidth.
n = 100 and replications = 400

directly available. As expected, the extra estimation of (U1,i , U2,i ) degrades the
performance of the Acar-Craiu-Yao estimator but cannot be avoided in practical
applications.

In Table 2, we examine the robustness issue for choosing the correct copula function
for both our estimator and Acar-Craiu-Yao estimator. The simulation setting is similar
to that of Table 1, but we set (U1,i , U2,i ) to follow the Frank copula instead of the
Clayton copula. Table 2 presents performance of our proposed estimator and Acar-
Craiu-Yao estimator both assuming the incorrect Clayton copula. From the results,
both estimators become less accurate with the wrongly specified copula. But the largest
AMSE for our estimator under the wrong copula model is still < 5 %.

We also examine the performances of the proposed estimator when the data fol-
low the second, third and forth data structures. Note that the Acar-Craiu-Yao pro-
cedure does not work for these situations and thus cannot be compared. In Table 3,
the censoring variables (C1, C2) are generated independently from (T1, T2), where
C1 = −1.5 exp(γ2 Z) log(U3), C2 = −1.5 exp(γ2 Z) log(U4), and U3 and U4 are
uniform(0, 1). In Table 4, C is generated independent from (T1, T2) and follows C =
−1.5 exp(γ2 Z) log(U5), where U5 follows uniform(0,1). In Table 5, (U1,i , U2,i ) are
generated from the extended Clayton copula C̃θ(Zi )(u1, u2) instead of Cθ(Zi )(u1, u2),
and C is generated independent from (T1, T2) and follows C = −6 exp(γ2 Z) log(U6),
where U6 follows uniform(0,1). Compared to the first data structure, the latter three
data structures are subject to censoring. Thus the effective sample size decreases,
resulting in larger estimation errors. In the worst case, AMSE is < 10 %.

5 Data example

For illustration, we apply the proposed methodology to analyze the bone marrow
transplant (BMT) data on page 484 of Klein and Moeschberger (2003), which contains
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Fig. 1 The estimated function of τ(z) using Epanechnikov kernel for the bone marrow transplantation data
where z corresponds to the age of the patients. The first plot is τ̂ (z) with the bandwidth h∗ selected by (8),
the second plot is τ̂ (z) with the bandwidth 2h∗, the third plot is τ̂ (z) with the bandwidth 0.5h∗

137 leukemia patients receiving bone marrow transplants. Of these patients, 40 died
without relapse, 40 died after relapse, 54 were alive without relapse at the end of
study period, 3 were alive after relapse at the end of study period. Using the time
of transplantation as the origin, we consider the following two survival times: T1 is
the time to relapse of leukemia and T2 is the time to death. Then T1 and T2 can be
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Fig. 2 The estimated function of τ(z) using Epanechnikov kernel for the bone marrow transplantation
data: for the AML-Low group and the other patients group respectively where z corresponds to the age of
the patients. The first plot is τ̂ (z) with the bandwidth h∗ selected by (8), the second plot is τ̂ (z) with the
bandwidth 2h∗, the third plot is τ̂ (z) with the bandwidth 0.5h∗

considered as the second structure of semi-competing risks data. Lakhal et al. (2008)
showed that the two times T1 and T2 are correlated with Kendall’s tau τ̂ = 0.80.

Ding et al. (2009) considered marginal regression of T1 and T2 under dependent
censoring. In particularly, based on their status at the time of transplantation, 54 patients
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Fig. 3 The smoothed density for the age of patients in the bone marrow transplantation data. The density is
estimated using the R-function density which uses a Gaussian kernel function and the automatically chosen
bandwidth h values displayed in the figure

were classified into the AML-Low group. It is found that patients in the AML-Low
group tend to have longer survival time (T2) and relapse time T1 than other patients
in the study. The patient’s age, a continuous covariate, does not have statistically
significant effect on both marginal distributions of T1 and T2. However this analysis
makes an implicit assumption that covariates (such as patient’s age) do not influence
the association between T1 and T2.

Here we illustrate our method by estimating the association between T1 and T2 as a
function of patient’s age (z). Note that the Acar-Craiu-Yao estimator is not applicable
to this data structure. Figure 1 plots the proposed estimator of τ(z) for all patients.
The two dotted lines are the 95 % pointwise confidence interval using the bootstrap
percentile method. Specifically we generate bootstrap data from the original data and
then compute τ̂ ∗(z) based on the bootstrap sample. Repeating this procedure B times,
we obtain τ̂ ∗

b (z) (b = 1, ..., B). Then the (1 − γ ) confidence interval of τ(z) can be
constructed as [τ̂ ∗

(Bγ /2)(z), τ̂
∗
(B(1−γ /2))(z)], where τ̂ ∗

(b)(z) (b = 1, ..., B) are the order
statistics of τ̂ ∗

b (z) (b = 1, ..., B) and γ is the significance level. The result shows
that the association between the relapse time and survival time is highly positive and
significantly different from zero. It appears that patient’s age does not significantly
affect the association structure. We obtain that

∑n
i=1 τ̂ (zi )/n=0.81. The result agrees

with the analysis by Lakhal et al. (2008) and Ding et al. (2009).
We can take a closer look at the data by applying the proposed analysis to dif-

ferent risk groups. In Fig. 2, we plot the estimated function of τ(z) for the AML-
Low group and the group of other patients. The plot shows that the association τ(z)
decreases with patient’s age in the AML-Low group, and increases with patient’s
age in the other group. Although the difference in the association pattern is not
significant due to small number of older patients in the two groups, our analy-
sis still reveals some interesting phenomenon to medical practitioners. In the first
two figures, we also plot the results using half and double the bandwidth selected
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by (8). The pattern of age effect on association remains the same. However these
additional two bandwidths do seem to undersmooth and oversmooth the association
patterns.

Note that Figs. 1 and 2 only draw the middle range of the age distribution where
there are enough patients for estimating τ(z). We do not include the results for few
very young or very old patients because the resulting estimates of τ(z) have high
variance and hence are not reliable for these z values. Figure 3 shows the estimated
density of the age distribution in this data set.

6 Concluding remarks

We propose a nonparametric approach to estimating the association parameter as a
function of covariates. This novel technique uses the pairwise concordance indicator as
the response variable and so is not a direct application of existing local linear regression
methods. Most traditional nonparametric methods are rank-based procedures which
cannot be immediately applied when censoring or truncation occurs. As a result, the
rank statistics are often re-expressed in terms of pairwise order relationship. The
proposed approach is the first smoothing technique based on pairwise quantities.

When complete data are available, our method can be compared with the likelihood-
based approach of Acar et al. (2011). Although the proposed method seems to be less
efficient, it does not require specifying the marginal models and hence is more robust.
Furthermore our approach, like the Acar-Craiu-Yao approach, also works for non-
Clayton copula models. For those models with α(z) = 2

∫ ∫
Cθ(z)(u, v)dCθ(z)(u, v),

we can also translate α(z) into the parameter θ(z) of the given copula.
The Clayton assumption is not needed for complete data since the proposed method

directly estimates α(z) = Pr(δi j = 1|Zi = Z j = z) which involves no model
assumption. For the other three data structures the Clayton model is assumed to result
in non-informative missing patterns for δi j . With the non-informative missing patterns,
α(z) is the same as the concordance probability among comparable pairs α∗(z) which
is estimated by our local linear estimator. Extension to non-Clayton copula families
without the non-informative missing property would produce additional problems
which are not our focus here.

Appendix 1: Proof for Equation (2)

To show that the missing mechanism is non-informative under censoring, we consider
the localized association measure in Oakes (1989). Let α∗(s, t; z) = Pr(δi j = 1|T1,i ∧
T1, j = s, T2,i ∧ T2, j = t, Zi = Z j = z). For Clayton copula, this localized measure
remains a constant over time, that is,

α∗(s, t; z) = α(z). (9)

This property ensures that Eq. (2)holds under censoring. Let f (s, t; z) denote the joint
density function for T1,i ∧ T1, j and T2,i ∧ T2, j conditional on Zi = Z j = z. Then
α(z) = Pr(δi j = 1|Zi = Z j = z) = ∫∞

s=0

∫∞
t=0 f (s, t; z)α∗(s, t; z)dsdt .
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For the second data structure, let G(s, t; z) = Pr(Y1,i ∧ Y1, j > s, Y2,i ∧ Y2, j >

t |Zi = Z j = z) denote the joint conditional survival function for pairwise minimum
of the censoring times. Then

Pr(δi j = 1|�i j = 1, Zi = Z j = z) =
∫∞

s=0

∫∞
t=0 f (s, t; z)G(s, t; z)α∗(s, t; z)dsdt
∫∞

s=0

∫∞
t=0 f (s, t; z)G(s, t; z)dsdt

,

which equals α(z) by (9).
For the third data structure, let G∗(t; z) = Pr(Yi ∧ Y j > t |Zi = Z j = z) denote

the conditional survival function for Yi ∧ Y j . Then

Pr(δi j = 1|�i j = 1, Zi = Z j = z) =
∫∞

s=0

∫∞
t=s f (s, t; z)G∗(t; z)α∗(s, t; z)dsdt
∫∞

s=0

∫∞
t=s f (s, t; z)G∗(t; z)dsdt

,

which again equals α(z) by (9).
For the fourth data structure, consider the localized measure α∗∗(s, t; z) =

Pr(δi j = 1|T1,i ∨T1, j = s, T2,i ∧T2, j = t, Zi = Z j = z). Then α∗∗(s, t; z) remains a
constant α(z) over time under the pseudo-Clayton copula due to the correspondence to
α∗(s, t; z) for the Clayton copula. Again, let G∗(t; z) = Pr(Yi ∧Y j > t |Zi = Z j = z)
denote the conditional survival function for Yi ∧ Y j . Then

Pr(δi j = 1|�i j = 1, Zi = Z j = z) =
∫∞

s=0

∫∞
t=s f (s, t; z)G∗(t; z)α∗∗(s, t; z)dsdt
∫∞

s=0

∫∞
t=s f (s, t; z)G∗(t; z)dsdt

which equals α(z) by constancy of α∗∗(s, t; z) over time.

Appendix 2: Proof of the Theorem 1

First we rewrite the solution to (1) in matrix terms. The design matrix Zz for (1) is
denoted by

Zz = (1, (Zi j − z)T )i< j =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 (Z1 − z)T (Z2 − z)T

1 (Z1 − z)T (Z3 − z)T

...
...

...

1 (Zn−1 − z)T (Zn − z)T

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The weight matrix is denoted by Wz = diag{�i j K H (Zi j − z)}i< j . And the local
linear estimator becomes

(
α̂

β̂

)

= (ZT
z WzZz)

−1ZT
z Wzδ.
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Thus

α̂ = eT
1 (ZT

z WzZz)
−1ZT

z Wzδ, (10)

where e1 is the (2d + 1) × 1 vector with 1 in the first entry and all other entries 0.
To simplify the notations, in the following calculations, we denote E[α̂] and V ar [α̂]

as the mean and variance conditional on Z1, ..., Zn (or equivalently conditional on Zz).
That is, computing the mean and variance coming from randomness of δ only.

Denote the gradient of α(z) as Dα(z) =
⎛

⎝
∂

∂z1
α̃(z1, z2)

∂
∂z2

α̃(z1, z2)

⎞

⎠

z1=z2=z

and the Hessian matrix

of α(z) as

Hα(z) =
⎛

⎜
⎝

∂2

∂z1∂zT
1
α̃(z1, z2)

∂2

∂z1∂zT
2
α̃(z1, z2)

∂2

∂z2∂zT
1
α̃(z1, z2)

∂2

∂z2∂zT
2
α̃(z1, z2)

⎞

⎟
⎠

z1=z2=z

.

Then by the Taylor expansion,

α̃(Zi j ) = α(z)+(Zi j − z)T Dα(z) + 1

2
(Zi j − z)T Hα(z)(Zi j − z) + op(‖Zi j − z‖2)

Denote A = E(δ|Z1, ..., Zn) = (α̃(Zi j ))i< j . Hence we have

A = Zz

(
α(z)
Dα(z)

)

+ 1

2
Qα(z) + Rα(z)

where

Qα(z) =
(
(Zi j − z)T Hα(z)(Zi j − z)

)

i< j

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(Z12 − z)T Hα(z)(Z12 − z)
(Z13 − z)T Hα(z)(Z13 − z)
...

(Z1n − z)T Hα(z)(Z1n − z)
(Z23 − z)T Hα(z)(Z23 − z)
...

(Z(n−1)n − z)T Hα(z)(Z(n−1)n − z)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and Rα(z) is the vector of Taylor series remainder terms.
Accordingly, plug the above expression into (10), we get

E(α̂|Z1, ..., Zn) = eT
1 (ZT

z WzZz)
−1ZT

z WzA

= α(z) + eT
1 (ZT

z WzZz)
−1ZT

z Wz[ 1
2 Qα(z) + Rα(z)].
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As in the usual local linear regression setting, the bias of α̂ is about

1

2
eT

1 (ZT
z WzZz)

−1ZT
z WzQα(z) (11)

because the term eT
1 (ZT

z WzZz)
−1ZT

z WzRα(z) is of smaller order. The variance of α̂

is

eT
1 (ZT

z WzZz)
−1ZT

z Wz V ar(δ)WzZz(ZT
z WzZz)

−1e1. (12)

However, unlike the usual local linear regression, these expressions need more careful
analysis because (a) the terms δi j in δ are not independent and (b) the weight matrix
involves extra correlated random variables �i j .

First, from Appendix 3 we obtain

ZT
z WzZz = n(n − 1)

2
g̃(z, z)[ fZ (z)]2 H̃ [

(
1 0
0 μ2(K )I2d

)

+ op(1)]H̃ , (13)

where

H̃ =
⎛

⎝
1 0 0
0 H 0
0 0 H

⎞

⎠ . (14)

Then from Appendix 4, We have

ZT
z WzQα(z)

=

⎛

⎜
⎜
⎝

n(n − 1)g̃(z, z)[ fZ (z)]2μ2(K )tr{H2Hα(z)} + op(n2tr(H2))

Op

[

n2

(
H31

H31

)]

⎞

⎟
⎟
⎠ .

Thus the bias of α̂ is

1

2
eT

1 (ZT
z WzZz)

−1ZT
z WzQα(z) + op(tr(H2)) = μ2(K )tr{H2Hα(z)} + op(tr(H2))

Secondly from Appendix 5,

ZT
z Wz V ar(δ)WzZz → n(n − 1)(n − 2)|H |−1ǧ(z, z, z)α̌(z, z, z)μ0(K 2)[ fZ (z)]3

×
⎛

⎝
1 Op[H1]T Op[H1]T

Op[H1] Op[H2] Op[H2]
Op[H1] Op[H2] Op[H2]

⎞

⎠ .
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Using this and (13), we have the variance of α̂ as

eT
1 (ZT

z WzZz)
−1ZT

z Wz V ar(δ)WzZz(ZT
z WzZz)

−1e1

= 4(n − 2)ǧ(z, z, z)α̌(z, z, z)μ0(K 2)

n(n − 1)|H |[g̃(z, z)]2 fZ (z)
+ op(n

−1|H |−1).

Notice that the order of variance is Op(n−1|H |−1) instead of Op(n−2|H |−1), the latter
of which is the variance when δi j ’s are independent for usual local linear regression
setting.

Appendix 3: Analysis of the matrix (ZT
z WzZz)

The matrix (ZT
z WzZz) can be rewritten as

ZT
z WzZz =

(
S0 ST

1
S1 S2

)

,

where

S0 =
∑

i< j
�i j K H (Zi j − z),

S1 =
∑

i< j
�i j K H (Zi j − z)(Zi j − z),

S2 =
∑

i< j
�i j K H (Zi j − z)(Zi j − z)(Zi j − z)T .

Compared to ordinary local linear regression, the terms Sk, k = 0, 1, 2 here (a) are
not i.i.d. sums and (b) contains the extra random variables �i j . Thus more careful
asymptotic analysis is required. Denote

g̃(z1, z2) = E[�12|Z1 = z1, Z2 = z2],
ǧ(z1, z2, z3) = E[�12�13|Z1 = z1, Z2 = z2, Z3 = z3].

Then we have

E [S0|Z1, ..., Zn] = E
[∑

i< j
�i j K H (Zi j − z)|Z1, ..., Zn

]

=
∑

i< j
g̃(Zi , Z j )K H (Zi j − z)

= 1

2

∑

i �= j
g̃(Zi , Z j )K H (Zi j − z).

The above expression converges to the limit

1

2

∑

i �= j
g̃(Zi , Z j )K H (Zi j − z) → n(n − 1)

2

∫ ∫
g̃(z1, z2)|H |−2 K (H−1(z1 − z))

× K (H−1(z2 − z)) fZ (z1) fZ (z2)dz1dz2
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= n(n − 1)

2

∫ ∫
g̃(z + Hu1, z + Hu2)K (u1)K (u2) fZ (z + Hu1)

× fZ (z + u2)du1du2 = n(n − 1)

2
g̃(z, z)[ fZ (z)]2[1 + o(1)],

using change of variable u1 = H−1(z1 − z) and u2 = H−1(z2 − z). Hence
E[S0|Z1, ..., Zn] = n(n−1)

2 g̃(z, z)[ fZ (z)]2[1 + o(1)].
The variance of S0 is

Var[S0|Z1, ..., Zn] =
∑

i< j

∑

k<l

Cov[�i j K H (Zi j − z),�kl K H (Zkl − z)|Z1, ..., Zn]

=
∑

i< j

V ar [�i j K H (Zi j − z)]

+
∑

i<( j �=k)

Cov[�i j K H (Zi j − z),�ik K H (Zik − z)]

+
∑

(i �=k)< j

Cov[�i j K H (Zi j − z),�k j K H (Zkj − z)]

+
∑

i< j<k

Cov[�i j K H (Zi j − z),� jk K H (Z jk − z)]

+
∑

k<i< j

Cov[�i j K H (Zi j − z),�ki K H (Zki − z)] + 0

= A1 + A2 + A3 + A4 + A5.

Here the V ar and Cov in Ai ’s are conditional on Z1, ..., Zn as before. We abuse the
notations for abbreviation.

By symmetry, the first term

A1 =
∑

i< j

V ar
[
�i j K H (Zi j − z)

] = n(n − 1)

2
V ar [�12 K H (Z12 − z)],

which becomes

n(n − 1)

2
E
{

[�12 K H (Z12 − z)]2
}

− n(n − 1)

2
{E [�12 K H (Z12 − z)]}2.

Hence

A1 = n(n − 1)

2
E{g̃(Z1, Z2)[K H (Z12 − z)]2} − n(n − 1)

2
× {E[g̃(Z1, Z2)K H (Z12 − z)]}2

= n(n − 1)

2

∫ ∫
g̃(z1, z2)[|H |−2 K (H−1(z1 − z))K (H−1(z2 − z))]2
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× fZ (z1) fZ (z2)dz1dz2 − n(n − 1)

2

[∫ ∫
g̃(z1, z2)|H |−2 K (H−1(z1 − z))

× K (H−1(z2 − z)) fZ (z1) fZ (z2)dz1dz2

]2

= n(n − 1)

2
|H |−2

∫ ∫
g̃(z + Hu1, z + Hu2)[K (u1)K (u2)]2

× fZ (z + Hu1) fZ (z + Hu2)du1du2

−n(n − 1)

2

{∫ ∫
g̃(z + Hu1, z + Hu2)K (u1)K (u2)

× fZ (z + Hu1) fZ (z + Hu2)du1du2

}2

→ n(n − 1)

2
|H |−2

× g̃(z, z)[μ0(K 2)]2[ fZ (z)]2 − n(n − 1)

2
{[μ1(K )]2[g̃(z, z) fZ (z)]2}2

→ n(n − 1)

2
|H |−2 g̃(z, z)[μ0(K 2)]2[ fZ (z)]2, (15)

where μ0(K 2) = ∫ [K (u)]2du and μ1(K ) = ∫
K (u)udu. And in the last step we

drop a term n(n−1)
2 {E[�12 K H (Z12 − z)]}2 = Op(n2) since |H | → 0. The second

term becomes

A2 =
∑

i<( j �=k)

Cov[�i j K H (Zi j − z),�ik K H (Zik − z)]

= n(n − 1)(n − 2)

4
Cov[�12 K H (Z12 − z),�13 K H (Z13 − z)]

= n(n − 1)(n − 2)

4
E[�12�13 K H (Z12 − z)K H (Z13 − z)]

− n(n − 1)(n − 2)

4
{E[�12 K H (Z12 − z)]}2

= n(n − 1)(n − 2)

4
E[ǧ(Z1, Z2, Z3)K H (Z12 − z)K H (Z13 − z)] − Op(n

3)

= n(n − 1)(n − 2)

4

∫ ∫ ∫
ǧ(z1, z2, z3)[|H |−2 K (H−1(z1 − z))

× K (H−1(z2 − z))][|H |−2 K (H−1(z1 − z))K (H−1(z3 − z))] fZ (z1) fZ (z2)

× fZ (z3)dz1dz2dz3 − Op(n
3)

→ n(n − 1)(n − 2)

4
|H |−1ǧ(z, z, z)μ0(K 2)[ fZ (z)]3. (16)

Then by symmetry, it is easy to see that

A2 = A3 = A4 = A5 → n(n − 1)(n − 2)

4
|H |−1ǧ(z, z, z)μ0(K 2)[ fZ (z)]3.
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Thus

V ar [S0|Z1, ..., Zn] → n(n − 1)

2
|H |−2 g̃(z, z)[μ0(K 2)]2

× [ fZ (z)]2 + n(n − 1)(n − 2)|H |−1ǧ(z, z, z)μ0(K 2)[ fZ (z)]3

= Op(n
2|H |−2 + n3|H |−1)

= op(n
4) = op{[E(S0|Z1, ..., Zn)]2},

since n|H | → ∞ as assumed in condition (ii). Therefore S0 → n(n−1)
2 g̃(z, z)[ fZ (z)]2.

Notice that if δi j ’s are i.i.d, the variance of S0 would be of order Op(n2|H |−2 which
is dominated by the extra term Op(n3|H |−1) due to the correlation among some pairs
of δi j ’s. Fortunately, the new order Op(n3|H |−1) is still dominated by the order of
[E(S0|Z1, ..., Zn)]2 = Op(n4), ensuring the convergence of S0.

Similarly, it follows that

E[S1|Z1, ..., Zn]
= n(n − 1)

2
E[g̃(Z1, Z2)K H (Z12 − z)(Z12 − z)]

= n(n − 1)

2

∫ ∫
g̃(z1, z2)|H |−2 K (H−1(z1 − z))K (H−1(z2 − z))

× fZ (z1) fZ (z2)

(
z1 − z
z2 − z

)

dz1dz2

= n(n − 1)

2

∫ ∫
K (u1)K (u2)g̃(z + Hu1, z + Hu2) fZ (z + Hu1)

× fZ (z + Hu2)H

(
u1
u2

)

du1du2

= n(n − 1)

2
H g̃(z, z)[ fZ (z)]2

(
μ0(K )μ1(K )

μ0(K )μ1(K )

)

+ op(n
2|H |).

(17)

Recall that μ0(K ) = ∫
K (u)du = 1 is a scalar, μ1(K ) = ∫

K (u)udu is a d-
dimensional vector. With the technical assumption of kernel K , μ1(K ) is a zero vector.
So E[S1|Z1, ..., Zn] = op(n2|H |). If we look more carefully,

g̃(z + Hu1, z + Hu2) fZ (z + Hu1) fZ (z + Hu2)

= g̃(z, z)[ fZ (z)]2 + fZ (z)DT
g fZ

(z)Hu1 + fZ (z)DT
g fZ

(z)Hu2 + Op(|H |2)

where Dg fZ (z) = { ∂
∂x [g̃(x, y) fZ (x)]}x=y=z is a d-dimensional vector. By symmetry

of g̃(x, y), we also have Dg fZ (z) = { ∂
∂y [g̃(x, y) fZ (y)]}x=y=z . Using this expansion,

E[S1|Z1, ..., Zn] = n(n − 1)

2
μ2(K )

(
H2 Dg fZ (z)

H2 Dg fZ (z)

)

fZ (z)[1 + o(1)]

= Op(n
2|H |2) = op(n

2|H |).
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The variance of S1 follows that

V ar [S1|Z1, ..., Zn] =
∑

i< j

∑

k<l

Cov[�i j K H (Zi j − z)(Zi j − z),

× �kl K H (Zkl − z)(Zkl − z)]
=
∑

i< j

V ar [�i j K H (Zi j − z)(Zi j − z)]

+
∑

i<( j �=k)

Cov[�i j K H (Zi j − z)(Zi j − z),�ik K H (Zik − z)(Zik − z)]

+
∑

(i �=k)< j

Cov[�i j K H (Zi j − z)(Zi j − z),�k j K H (Zkj − z)(Zkj − z)]

+
∑

i< j<k

Cov[�i j K H (Zi j − z)(Zi j − z),� jk K H (Z jk − z)(Z jk − z)]

+
∑

k<i< j

Cov[�i j K H (Zi j − z)(Zi j − z),�ki K H (Zki − z)(Zki − z)] + 0

= Op(n
2) + Op(n

3|H |) + Op(n
3|H |) + Op(n

3|H |) + Op(n
3|H |)

= Op(n
2) + Op(n

3|H |)
= op(n

4|H |2),
with the last step coming from condition n|H | → ∞. So we get S1 = op(n2|H |).

E[S2|Z1, ..., Zn] = n(n − 1)

2
E[g̃(Z1, Z2)K H (Z12 − z)(Z12 − z)(Z12 − z)T ]

= n(n − 1)

2

∫ ∫
g̃(z1, z2)|H |−2 K (H−1(z1 − z))K (H−1(z2 − z))

× fZ (z1) fZ (z2)

(
(z1 − z)(z1 − z)T (z1 − z)(z2 − z)T

(z2 − z)(z1 − z)T (z2 − z)(z2 − z)T

)

dz1dz2

= n(n − 1)

2

∫ ∫
K (u1)K (u2)g̃(z + Hu1, z + Hu2)

× fZ (z + Hu1) fZ (z + Hu2)

(
Hu1uT

1 H Hu1uT
2 H

Hu2uT
1 H Hu2uT

2 H

)

du1du2

= n(n − 1)

2
g̃(z, z)[ fZ (z)]2μ2(K )

(
H2 0

0 H2

)

+ op(n
2|H |2),

(18)

and

V ar(S2|Z1, ..., Zn) = Op(n
2|H |2) + Op(n

3|H |3) = op(n
4|H |4).
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Hence,

S2 = μ2(K )

(
H2 0
0 H2

)

+ op(n
2|H |2).

Combining all the results together, we get Eq. (13)

ZT
z WzZz = n(n − 1)

2
g̃(z, z)[ fZ (z)]2

⎛

⎝
1 0 0
0 μ2(K )H2 0
0 0 μ2(K )H2

⎞

⎠ [1 + op(1)].

Appendix 4: Analysis of the vector ZT
z WzQα(z)

Now we have

ZT
z WzQα(z) =

(∑
i< j [�i j K H (Zi j − z)(Zi j − z)T Hα(z)(Zi j − z)]

∑
i< j [�i j K H (Zi j − z)(Zi j − z)T Hα(z)(Zi j − z)](Zi j − z)

)

.

First,

E

⎧
⎨

⎩

∑

i< j

[�i j K H (Zi j − z)(Zi j − z)T Hα(z)(Zi j − z)]
⎫
⎬

⎭

= n(n − 1)

2
E[g̃(Z1, Z2)K H (Z12 − z)(Z12 − z)T Hα(z)(Z12 − z)]

= n(n − 1)

2

∫ ∫
g̃(z1, z2)|H |−2 K (H−1(z1 − z))K (H−1(z2 − z))

× fZ (z1) fZ (z2)((z1 − z)T , (z2 − z)T )Hα(z)

(
z1 − z
z2 − z

)

dz1dz2

= n(n − 1)

2

∫ ∫
K (u1)K (u2)g̃(z + Hu1, z + Hu2)

× fZ (z + Hu1) fZ (z + Hu2)[uT
1 HHα(z)Hu1 + uT

2 HHα(z)Hu2]du1du2

= n(n − 1)

2

∫ ∫
K (u1)K (u2)g̃(z + Hu1, z + Hu2) fZ (z + Hu1) fZ (z + Hu2)

× [tr{HHα(z)Hu1uT
1 } + tr{HHα(z)Hu2uT

2 }]du1du2

= n(n − 1)g̃(z, z)[ fZ (z)]2μ2(K )tr{H2Hα(z)} + op(n
2tr(H2));

(19)

123



Local linear estimation of concordance probability with application

and

V ar

⎧
⎨

⎩

∑

i< j

[�i j K H (Zi j − z)(Zi j − z)T Hα(z)(Zi j − z)]
⎫
⎬

⎭

= Op(n
2tr(H2)) + Op(n

3tr(H3)) = op(n
4tr(H)4).

Thus

∑

i< j

[�i j K H (Zi j − z)(Zi j − z)T Hα(z)(Zi j − z)]

= n(n − 1)g̃(z, z)[ fZ (z)]2μ2(K )tr{H2Hα(z)} + op(n
2tr(H2)).

Secondly,

E

⎧
⎨

⎩

∑

i< j

[�i j K H (Zi j − z)(Zi j − z)T Hα(z)(Zi j − z)](Zi j − z)

⎫
⎬

⎭

= n(n − 1)

2
E[g̃(Z1, Z2)K H (Z12 − z)(Z12 − z)T Hα(z)(Z12 − z)(Z12 − z)]

= n(n − 1)

2

∫ ∫
g̃(z1, z2)|H |−2 K (H−1(z1 − z))K (H−1(z2 − z))

fZ (z1) fZ (z2)

{

((z1 − z)T , (z2 − z)T )Hα(z)

(
z1 − z
z2 − z

)}(
z1 − z
z2 − z

)

dz1dz2

= n(n − 1)

2

∫ ∫
K (u1)K (u2)g(z + Hu1, z + Hu2) fZ (z + Hu1) fZ (z + Hu2)

[uT
1 HHα(z)Hu1 + uT

2 HHα(z)Hu2]
(

Hu1
Hu2

)

du1du2

= Op

[

n2
(

H31
H31

)]

, (20)

where 1 denotes the d-dimensional vector with all entries as one. Hence

V ar

⎧
⎨

⎩

∑

i< j

[�i j K H (Zi j − z)(Zi j − z)T Hα(z)(Zi j − z)](Zi j − z)

⎫
⎬

⎭
= op(n

4 H4).

We have

∑

i< j

[�i j K H (Zi j − z)(Zi j − z)T Hα(z)(Zi j − z)](Zi j − z) = Op

[

n2
(

H31
H31

)]

.
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Therefore

ZT
z WzQα(z)

=
⎛

⎜
⎝

n(n − 1)g̃(z, z)[ fZ (z)]2μ2(K )tr{H2Hα(z)} + op(n2tr(H2))

Op

[

n2
(

H31
H31

)]

⎞

⎟
⎠ . (21)

Appendix 5: Analysis of the matrix (ZT
z Wz V ar(δ)WzZz)

The matrix (ZT
z Wz V ar(δ)WzZz) can be rewritten as

ZT
z Wz V ar(δ)WzZz =

(
S∗

0 (S∗
1 )T

S∗
1 S∗

2

)

,

where

S∗
0 =

∑

i< j

∑

k<l

�i j K H (Zi j − z)�kl K H (Zkl − z)Cov(δi j , δkl),

S∗
1 =

∑

i< j

∑

k<l

�i j K H (Zi j − z)�kl K H (Zkl − z)Cov(δi j , δkl)(Zi j − z),

S∗
2 =

∑

i< j

∑

k<l

�i j K H (Zi j − z)�kl K H (Zkl − z)Cov(δi j , δkl)(Zi j − z)(Zi j − z)T .

Notice that Cov(δi j , δkl) = 0 for i �= j �= k �= l. So the double summation in
S∗

k , k = 0, 1, 2 actually involves less than [n(n −1)/2]2 terms, however, there is more
than the n(n − 1)/2 terms for independent δi j ’s. Similar as in Appendix 1, we have
the following decomposition

S∗
0 =

∑

i< j

�i j K 2
H (Zi j − z)α̃(Zi , Z j )

+
∑

i<( j �=k)

�i j�ik K H (Zi j − z)K H (Zik − z)α̌(Zi , Z j , Zk)

+
∑

(i �=k)< j

�i j�k j K H (Zi j − z)K H (Zkj − z)α̌(Z j , Zi , Zk) (22)

+
∑

i< j<k

�i j� jk K H (Zi j − z)K H (Z jk − z)α̌(Z j , Zi , Zk)

+
∑

k<i< j

�i j�ki K H (Zi j − z)K H (Zki − z)α̌(Zi , Z j , Zk),

where α̌(Zi , Z j , Zk) = Cov[δi j , δik |�i j = �ik = 1, Zi , Z j , Zk] = E[δi jδik |�i j =
�ik = 1, Zi , Z j , Zk] − α̃(Zi , Z j )α̃(Zi , Zk). Hence
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E[S∗
0 |Z1, ..., Zn] =

∑

i< j

E[K 2
H (Zi j − z)g̃(Zi , Z j )α̃(Zi , Z j )]

+
∑

i<( j �=k)

E[K H (Zi j − z)K H (Zik − z)ǧ(Zi , Z j , Zk)α̌(Zi , Z j , Zk)]

+
∑

(i �=k)< j

E[K H (Zi j − z)K H (Zkj − z)ǧ(Z j , Zi , Zk)α̌(Z j , Zi , Zk)]

+
∑

i< j<k

E[K H (Zi j − z)K H (Z jk − z)ǧ(Z j , Zi , Zk)α̌(Z j , Zi , Zk)]

+
∑

k<i< j

E[K H (Zi j − z)K H (Zki − z)ǧ(Zi , Z j , Zk)α̌(Zi , Z j , Zk)]

= B1 + B2 + B3 + B4 + B5. (23)

For the first term,

B1 = n(n − 1)

2
E[K 2

H (Z12 − z)g̃(Z1, Z2)α̃(Z1, Z2)]

= n(n − 1)

2

∫ ∫
g̃(z1, z2)α̃(z1, z2)[|H |−2

× K (H−1(z1 − z))K (H−1(z2 − z))]2 fZ (z1) fZ (z2)dz1dz2

= n(n − 1)

2
|H |−2

∫ ∫
g̃(z + Hu1, z + Hu2)α̃(z + Hu1, z + Hu2)

× [K (u1)K (u2)]2 fZ (z + Hu1) fZ (z + Hu2)du1du2

= n(n − 1)

2
|H |−2 g̃(z, z)α̃(z, z)[μ0(K 2)]2[ fZ (z)]2 + op(n

2|H |−2).

For the second term,

B2 =
∑

i<( j �=k)

E[K H (Zi j − z)K H (Zik − z)ǧ(Zi , Z j , Zk)α̌(Zi , Z j , Zk)]

= n(n − 1)(n − 2)

4
E[ǧ(Z1, Z2, Z3)α̌(Z1, Z2, Z3)K H (Z12 − z)K H (Z13 − z)]

= n(n − 1)(n − 2)

4

∫ ∫ ∫
ǧ(z1, z2, z3)α̌(z1, z2, z3)

× [|H |−2 K (H−1(z1 − z))K (H−1(z2 − z))][|H |−2 K (H−1(z1 − z))

× K (H−1(z3 − z))] fZ (z1) fZ (z2) fZ (z3)dz1dz2dz3

= n(n − 1)(n − 2)

4
|H |−1ǧ(z, z, z)α̌(z, z, z)μ0(K 2)[ fZ (z)]3 + op(n

3|H |−1).

(24)
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Similarly we have

B3 = B4 = B5 = n(n − 1)(n − 2)

4
|H |−1ǧ(z, z, z)α̌(z, z, z)μ0(K 2)

× [ fZ (z)]3 + op(n
3|H |−1).

Therefore

E[S∗
0 |Z1, ..., Zn] = n(n − 1)(n − 2)|H |−1ǧ(z, z, z)α̌(z, z, z)μ0(K 2)

× [ fZ (z)]3 + op(n
3|H |−1).

Since V ar(S∗
0 |Z1, ..., Zn) = Op(n5|H |−3), we have

S∗
0 → n(n − 1)(n − 2)|H |−1ǧ(z, z, z)α̌(z, z, z)μ0(K 2)[ fZ (z)]3.

Similarly, we have

S∗
1 =

∑

i< j

�i j K 2
H (Zi j − z)α̃(Zi , Z j )(Zi j − z)

+
∑

i<( j �=k)

�i j�ik K H (Zi j − z)K H (Zik − z)α̌(Zi , Z j , Zk)(Zi j − z)

+
∑

(i �=k)< j

�i j�k j K H (Zi j − z)K H (Zkj − z)α̌(Z j , Zi , Zk)(Zi j − z) (25)

+
∑

i< j<k

�i j� jk K H (Zi j − z)K H (Z jk − z)α̌(Z j , Zi , Zk)(Zi j − z)

+
∑

k<i< j

�i j�ki K H (Zi j − z)K H (Zki − z)α̌(Zi , Z j , Zk)(Zi j − z)

= Op[n2|H |−2
(

H1
H1

)

] + Op[n3|H |−1
(

H1
H1

)

],

S∗
2 =

∑

i< j

�i j K 2
H (Zi j − z)α̃(Zi , Z j )(Zi j − z)(Zi j − z)T

+
∑

i<( j �=k)

�i j�ik K H (Zi j − z)K H (Zik − z)α̌(Zi , Z j , Zk)(Zi j − z)(Zik − z)T

+
∑

(i �=k)< j

�i j�k j K H (Zi j − z)K H (Zkj − z)α̌(Z j , Zi , Zk)(Zi j − z)Zkj − z)T

+
∑

i< j<k

�i j� jk K H (Zi j − z)K H (Z jk − z)α̌(Z j , Zi , Zk)(Zi j − z)(Z jk − z)T

+
∑

k<i< j

�i j�ki K H (Zi j − z)K H (Zki − z)α̌(Zi , Z j , Zk)(Zi j − z)(Zki − z)T

= Op

[

n2|H |−2
(

H2 0
0 H2

)]

+ Op

[

n3|H |−1
(

H2 H2

H2 H2

)]

. (26)
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Therefore

ZT
z Wz V ar(δ)WzZz → n(n − 1)(n − 2)|H |−1ǧ(z, z, z)α̌(z, z, z)μ0(K 2)[ fZ (z)]3

×

⎛

⎜
⎜
⎝

1 Op[H1]T Op[H1]T

Op[H1] Op[H2] Op[H2]
Op[H1] Op[H2] Op[H2]

⎞

⎟
⎟
⎠ .

Appendix 6: Proof of Theorem 2

Here we modify the proof of Theorem 1 similar to the proof of Theorem 2.2 in Ruppert
and Wand (1994). The key point for boundary treatment is to write the estimator (10) in
terms of the equivalent kernel K ∗(u; z) = eT

1 (ZT
z WzZz)

−1(1 (u − z)T )T K H (u − z).
Then α̂(z) =∑i< j K ∗(Zi j ; z)�i jδi j ,

∑

i< j

K ∗(Zi j ; z)�i j = 1,
∑

i< j

K ∗(Zi j ; z)�i j (Zi j − z) = 0. (27)

The moment condition (27) ensures the asymptotic conditional bias and variance are
given by (11) and (12) at both the interior and the boundary. Then we only need to
check the derivations in Appendices C to E to get different approximations for matrices
ZT

z WzZz and ZT
z Wz V ar(δ)WzZz . At boundary points, the integral of kernel function

K (u) over the whole range would be replaced by its integral over only the region Dz,H .
Thus the quantities in Theorem 1 are modified accordingly.

Quick examination of Eqs. (15)–(18) shows that, at boundary point, Eq. (13) should
change into

ZT
z WzZz = n(n − 1)

2
g̃(z, z)[ fZ (z)]2 H̃ Nz H̃ [1 + op(1)], (28)

with H̃ defined in (14).
Examination of Eqs. (19) and (20) shows that, at boundary point, ZT

z WzQα(z) in
Eq. (21) converges to

n(n − 1)

2
g̃(z, z)[ fZ (z)]2

×

⎛

⎜
⎜
⎜
⎝

∫
Dz,H

∫
Dz,H

K (u1)K (u2)[uT
1 HHα(z)Hu1 + uT

2 HHα(z)Hu2]du1du2
∫
Dz,H

∫
Dz,H

Hu1 K (u1)K (u2)[uT
1 HHα(z)Hu1 + uT

2 HHα(z)Hu2]du1du2
∫
Dz,H

∫
Dz,H

Hu2 K (u1)K (u2)[uT
1 HHα(z)Hu1 + uT

2 HHα(z)Hu2]du1du2

⎞

⎟
⎟
⎟
⎠

= n(n − 1)

2
g̃(z, z)[ fZ (z)]2 H̃

⎛

⎜
⎜
⎝

2μ∗
z,0(K )μH

z,2(K )

μH
z,2(K )μ∗

z,1(K ) + μ∗
z,0(K )μH

z,3(K )

μH
z,2(K )μ∗

z,1(K ) + μ∗
z,0(K )μH

z,3(K )

⎞

⎟
⎟
⎠ .
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Plug this and (28) into (11), we get (6).
Examination of Eqs. (22)–(26) shows that, at boundary point, ZT

z Wz V ar(δ)WzZz

converges to

n(n − 1)(n − 2)|H |−1ǧ(z, z, z)α̌(z, z, z)[ fZ (z)]3 H̃ Tz H̃ [1 + op(1)].

Plug this and (28) into (12) we get (7)

V ar [α̂(z)|Z1, ..., Zn] = 4ǧ(z, z, z)α̌(z, z, z)eT
1 N−1

z Tz N−1
z e1

n|H |[g̃(z, z)]2 fZ (z)
[1 + op(1)].
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